ﻻ يوجد ملخص باللغة العربية
Let $P_t$ denote the path on $t$ vertices. The $r$-coloured Ramsey number of $P_t$, denoted by $R_r(P_t)$, is the minimum integer $n$ such that whenever the complete graph on $n$ vertices is given an $r$-edge-colouring, there exists a monochromatic copy of $P_t$. In this note, we determine $R_r(P_5)$, which is approximately $3r$.
A path-matching of order $p$ is a vertex disjoint union of nontrivial paths spanning $p$ vertices. Burr and Roberts, and Faudree and Schelp determined the 2-color Ramsey number of path-matchings. In this paper we study the multicolor Ramsey number of
We prove that the number of integers in the interval [0,x] that are non-trivial Ramsey numbers r(k,n) (3 <= k <= n) has order of magnitude (x ln x)**(1/2).
Burr and ErdH{o}s in 1975 conjectured, and Chvatal, Rodl, Szemeredi and Trotter later proved, that the Ramsey number of any bounded degree graph is linear in the number of vertices. In this paper, we disprove the natural directed analogue of the Burr
In this paper, we consider a variant of Ramsey numbers which we call complementary Ramsey numbers $bar{R}(m,t,s)$. We first establish their connections to pairs of Ramsey $(s,t)$-graphs. Using the classification of Ramsey $(s,t)$-graphs for small $s,
Let $P$ denote a 3-uniform hypergraph consisting of 7 vertices $a,b,c,d,e,f,g$ and 3 edges ${a,b,c}, {c,d,e},$ and ${e,f,g}$. It is known that the $r$-color Ramsey number for $P$ is $R(P;r)=r+6$ for $rle 9$. The proof of this result relies on a caref