ﻻ يوجد ملخص باللغة العربية
Registration of 3D anatomic structures to their 2D dual fluoroscopic X-ray images is a widely used motion tracking technique. However, deep learning implementation is often impeded by a paucity of medical images and ground truths. In this study, we proposed a transfer learning strategy for 3D-to-2D registration using deep neural networks trained from an artificial dataset. Digitally reconstructed radiographs (DRRs) and radiographic skull landmarks were automatically created from craniocervical CT data of a female subject. They were used to train a residual network (ResNet) for landmark detection and a cycle generative adversarial network (GAN) to eliminate the style difference between DRRs and actual X-rays. Landmarks on the X-rays experiencing GAN style translation were detected by the ResNet, and were used in triangulation optimization for 3D-to-2D registration of the skull in actual dual-fluoroscope images (with a non-orthogonal setup, point X-ray sources, image distortions, and partially captured skull regions). The registration accuracy was evaluated in multiple scenarios of craniocervical motions. In walking, learning-based registration for the skull had angular/position errors of 3.9 +- 2.1 deg / 4.6 +- 2.2 mm. However, the accuracy was lower during functional neck activity, due to overly small skull regions imaged on the dual fluoroscopic images at end-range positions. The methodology to strategically augment artificial training data can tackle the complicated skull registration scenario, and has potentials to extend to widespread registration scenarios.
AI plays an important role in COVID-19 identification. Computer vision and deep learning techniques can assist in determining COVID-19 infection with Chest X-ray Images. However, for the protection and respect of the privacy of patients, the hospital
Novel Coronavirus disease (COVID-19) is an extremely contagious and quickly spreading Coronavirus infestation. Severe Acute Respiratory Syndrome (SARS) and Middle East Respiratory Syndrome (MERS), which outbreak in 2002 and 2011, and the current COVI
Currently, Coronavirus disease (COVID-19), one of the most infectious diseases in the 21st century, is diagnosed using RT-PCR testing, CT scans and/or Chest X-Ray (CXR) images. CT (Computed Tomography) scanners and RT-PCR testing are not available in
Fully automatic X-ray to CT registration requires a solid initialization to provide an initial alignment within the capture range of existing intensity-based registrations. This work adresses that need by providing a novel automatic initialization, w
Obtaining labels for medical (image) data requires scarce and expensive experts. Moreover, due to ambiguous symptoms, single images rarely suffice to correctly diagnose a medical condition. Instead, it often requires to take additional background inf