ﻻ يوجد ملخص باللغة العربية
We propose that the Schrodinger equation results from applying the classical wave equation to describe the physical system in which subatomic particles play random motion, thereby leading to quantum mechanics. The physical reality described by the wave function is subatomic particle moving randomly. Therefore, the characteristics of quantum mechanics have a dual nature, one of them is the deterministic nature carried on from classical physics, and the other is the probabilistic nature coined by particles random motion. Based on this model, almost all of open questions in quantum mechanics can be explained consistently, which include the particle-wave duality, the principle of quantum superposition, the interference pattern of double-slit experiments, and the boundary between classical world and quantum world.
It was recently advanced the argument that Unruh effect emerges from the study of quantum field theory in quantum space-time. Quantum space-time is identified with the Hilbert space of a new kind of quantum fields, the accelerated fields, which are d
A covariant non-local extention if the stationary Schrodinger equation is presented and its solution in terms of Heisenbergss matrix quantum mechanics is proposed. For the special case of the Riesz fractional derivative, the calculation of correspond
By constructing the commutative operators chain, we derive the integrable conditions for solving the eigenfunctions of Dirac equation and Schrodinger equation. These commutative relations correspond to the intrinsic symmetry of the physical system, w
In this paper we prove the following: (1) The basic error of time-dependent perturbation theory is using the sum of first finite order of perturbed solutions to substitute the exact solution in the divergent interval of the series for calculating the
Irrotational ow of a spherical thin liquid layer surrounding a rigid core is described using the defocusing nonlinear Schrodinger equation. Accordingly, azimuthal moving nonlinear waves are modeled by periodic dark solitons expressed by elliptic func