ﻻ يوجد ملخص باللغة العربية
The statistical mechanics characterization of a finite subsystem embedded in an infinite system is a fundamental question of quantum physics. Nevertheless, a full closed form { for all required entropic measures} does not exist in the general case even for free systems when the finite system in question is composed of several disjoint intervals. Here we develop a mathematical framework based on the Riemann-Hilbert approach to treat this problem in the one-dimensional case where the finite system is composed of two disjoint intervals and in the thermodynamic limit (both intervals and the space between them contains an infinite number of lattice sites and the result is given as a thermodynamic expansion). To demonstrate the usefulness of our method, we compute the change in the entanglement and negativity namely the spectrum of eigenvalues of the reduced density matrix with our without time reversal of one of the intervals. We do this in the case that the distance between the intervals is much larger than their size. The method we use can be easily applied to compute any power in an expansion in the ratio of the distance between the intervals to their size. {We expect these results to provide the necessary mathematical apparatus to address relevant questions in concrete physical scenarios, namely the structure and extent of quantum correlations in fermionic systems subject to local environment.
We apply the recent results of F. Hiai, M. Mosonyi and T. Ogawa [arXiv:0707.2020, to appear in J. Math. Phys.] to the asymptotic hypothesis testing problem of locally faithful shift-invariant quasi-free states on a CAR algebra. We use a multivariate
We examine distinct measures of fermionic entanglement in the exact ground state of a finite superconducting system. It is first shown that global measures such as the one-body entanglement entropy, which represents the minimum relative entropy betwe
We propose a unified mathematical scheme, based on a classical tensor isomorphism, for characterizing entanglement that works for pure states of multipartite systems of any number of particles. The degree of entanglement is indicated by a set of abso
We consider a non-interacting bipartite quantum system $mathcal H_S^Aotimesmathcal H_S^B$ undergoing repeated quantum interactions with an environment modeled by a chain of independant quantum systems interacting one after the other with the bipartit
In this paper, we study the bipartite entanglement of spin coherent states in the case of pure and mixed states. By a proper choice of the subsystem spins, the entanglement for large class of quantum systems is investigated. We generalize the result