ترغب بنشر مسار تعليمي؟ اضغط هنا

Coherent Perfect Absorption in Tavis-Cummings Models

96   0   0.0 ( 0 )
 نشر من قبل Imran Mirza Dr.
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We theoretically study the conditions under which two laser fields can undergo Coherent Perfect Absorption (CPA) when shined on a single-mode bi-directional optical cavity coupled with two two- level quantum emitters (natural atoms, artificial atoms, quantum dots, qubits, etc.). In addition to being indirectly coupled through the cavity-mediated field, in our Tavis-Cummings model the two quantum emitters (QEs) are allowed to interact directly via the dipole-dipole interaction (DDI). Under the mean-field approximation and low-excitation assumption, in this work, we particularly focus on the impact of DDI on the existence of CPA in the presence of decoherence mechanisms (spontaneous emission from the QEs and the leakage of photons from the cavity walls). We also present a dressed-state analysis of the problem to discuss the underlying physics related to the allowed polariton state transitions in the Jaynes-Tavis-Cummings ladder. As a key result, we find that in the strong-coupling regime of cavity quantum electrodynamics, the strong DDI and the emitter-cavity detuning can act together to achieve the CPA at two laser frequencies tunable by the inter-atomic separation which are not possible to attain with a single QE in the presence of detuning. Our CPA results are potentially applicable in building quantum memories that are an essential component in long-distance quantum networking.



قيم البحث

اقرأ أيضاً

We derive an analytical approximate solution of the time-dependent state vector in terms of material Bell states and coherent states of the field for a generalized two-atom Tavis-Cummings model with nonlinear intensity dependent matter-field interact ion. Using this solution, we obtain simple expressions for the atomic concurrence and purity in order to study the entanglement in the system at specific interaction times. We show how to implement entangling atomic operations through measurement of the field. We illustrate how these operations can lead to a complete Bell measurement. Furthermore, when considering two orthogonal states of the field as levels of a third qubit, it is possible to implement a unitary three-qubit gate capable of generating authentic tripartite entangled states such as the Greenberger-Horne-Zeilinger (GHZ) state and the W-state. As an example of the generic model, we present an ion-trap setting employing the quantized mode of the center of mass motion instead the photonic field, showing that the implementation of realistic entangling operations from intrinsic nonlinear matter-field interactions is indeed possible.
We study in detail the relationship between the Tavis-Cummings Hamiltonian of quantum optics and a family of quasi-exactly solvable Schrodinger equations. The connection between them is stablished through the biconfluent Heun equation. We found that each invariant $n$-dimensional subspace of Tavis-Cummings Hamiltonian corresponds either to $n$ potentials, each with one known solution, or to one potential with $n$-known solutions. Among these Schrodinger potentials appear the quarkonium and the sextic oscillator.
The quality of controlling a system of optical cavities in the Tavis-Cummings-Hubbard (TCH) model is estimated with the examples of quantum gates, quantum walks on graphs, and of the detection of singlet states. This type of control of complex system s is important for quantum computing, for the optical interpretation of mechanical movements, and for quantum cryptography, where singlet states of photons and charges play an essential role. It has been found that the main reason for the decrease of the control quality in the THC model is due to the finite width of the atomic spectral lines, which is itself related to the time energy uncertainty relation. This paper evaluates the quality of a CSign-type quantum gate based on asynchronous atomic excitations and on the optical interpretation of the motion of a free particle.
114 - M. Feng , Y.P. Zhong , T. Liu 2014
Quantum phase transitions play an important role in many-body systems and have been a research focus in conventional condensed matter physics over the past few decades. Artificial atoms, such as superconducting qubits that can be individually manipul ated, provide a new paradigm of realising and exploring quantum phase transitions by engineering an on-chip quantum simulator. Here we demonstrate experimentally the quantum critical behaviour in a highly-controllable superconducting circuit, consisting of four qubits coupled to a common resonator mode. By off-resonantly driving the system to renormalise the critical spin-field coupling strength, we have observed a four-qubit non-equilibrium quantum phase transition in a dynamical manner, i.e., we sweep the critical coupling strength over time and monitor the four-qubit scaled moments for a signature of a structural change of the systems eigenstates. Our observation of the non-equilibrium quantum phase transition, which is in good agreement with the driven Tavis-Cummings theory under decoherence, offers new experimental approaches towards exploring quantum phase transition related science, such as scaling behaviours, parity breaking and long-range quantum correlations.
We present the analytical solution of the Tavis-Cummings (TC) model for more than one qubit inhomogeneously coupled to a single mode radiation field beyond the rotating-wave approximation (RWA). The significant advantage of the displaced oscillator b asis enables us to apply the same truncation techniques adopted in the single qubit Jaynes-Cummings (JC) model to the multiple qubits system. The derived analytical spectrum match perfectly the exact diagonalization numerical solutions of the inhomogeneous TC model in the parameter regime where the qubits transition frequencies are far off-resonance with the field frequency and the interaction strengths reach the ultra-strong coupling regime. The two-qubit TC model is quasi-exactly solvable because part of the spectra can be determined exactly in the homogeneous coupling case with two identical qubits or with symmetric(asymmetric) detuning. By means of the fidelity of quantum states we identify several nontrivial level crossing points in the same parity subspace, which implies that homogeneous coupled two-qubit TC model with $omega_1=omega_2$ or $omega_1pmomega_2=2omega_c$ is integrable. We further explore the time evolution of the qubits population inversion and the entanglement behavior taking two qubits as an example. The analytical methods provide unexpectedly accurate results in describing the dynamics of the qubit in the present experimentally accessible coupling regime, showing that the collapse-revival phenomena emerge, survive, and are finally destroyed when the coupling strength increases beyond the ultra-strong coupling regime. The suggested procedure applies readily to the multiple qubits system such as the GHZ state entanglement evolution and quantum entanglement between a single photon and superconducting qubits of particular experiment interest.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا