ﻻ يوجد ملخص باللغة العربية
We consider the eigenvalues of symplectic elliptic Ginibre matrices which are known to form a Pfaffian point process whose correlation kernel can be expressed in terms of the skew-orthogonal Hermite polynomials. We derive the scaling limits and the convergence rates of the correlation functions at the real bulk/edge of the spectrum, which in particular establishes the local universality at strong non-Hermiticity. Furthermore, we obtain the subleading corrections of the edge correlation kernels, which depend on the non-Hermiticity parameter contrary to the universal leading term. Our proofs are based on the asymptotic behaviour of the complex elliptic Ginibre ensemble due to Lee and Riser as well as on a version of the Christoffel-Darboux identity, a differential equation satisfied by the skew-orthogonal polynomial kernel.
We consider various asymptotic scaling limits $Ntoinfty$ for the $2N$ complex eigenvalues of non-Hermitian random matrices in the symmetry class of the symplectic Ginibre ensemble. These are known to be integrable, forming Pfaffian point processes, a
We give a method for taking microscopic limits of normal matrix ensembles. We apply this method to study the behaviour near certain types of singular points on the boundary of the droplet. Our investigation includes ensembles without restrictions nea
Let $sqrt{N}+lambda_{max}$ be the largest real eigenvalue of a random $Ntimes N$ matrix with independent $N(0,1)$ entries (the `real Ginibre matrix). We study the large deviations behaviour of the limiting $Nrightarrow infty$ distribution $P[lambda_{
We prove rates of convergence for the circular law for the complex Ginibre ensemble. Specifically, we bound the expected $L_p$-Wasserstein distance between the empirical spectral measure of the normalized complex Ginibre ensemble and the uniform meas
Fix a space dimension $dge 2$, parameters $alpha > -1$ and $beta ge 1$, and let $gamma_{d,alpha, beta}$ be the probability measure of an isotropic random vector in $mathbb{R}^d$ with density proportional to begin{align*} ||x||^alpha, expleft(-frac{|x