ﻻ يوجد ملخص باللغة العربية
In this paper, a simplified second-order Gaussian Poincare inequality for normal approximation of functionals over infinitely many Rademacher random variables is derived. It is based on a new bound for the Kolmogorov distance between a general Rademacher functional and a Gaussian random variable, which is established by means of the discrete Malliavin-Stein method and is of independent interest. As an application, the number of vertices with prescribed degree and the subgraph counting statistic in the Erdos-Renyi random graph are discussed. The number of vertices of fixed degree is also studied for percolation on the Hamming hypercube. Moreover, the number of isolated faces in the Linial-Meshulam-Wallach random $kappa$-complex and infinite weighted 2-runs are treated.
Given a vector $F=(F_1,dots,F_m)$ of Poisson functionals $F_1,dots,F_m$, we investigate the proximity between $F$ and an $m$-dimensional centered Gaussian random vector $N_Sigma$ with covariance matrix $Sigmainmathbb{R}^{mtimes m}$. Apart from findin
We prove infinite-dimensional second order Poincare inequalities on Wiener space, thus closing a circle of ideas linking limit theorems for functionals of Gaussian fields, Steins method and Malliavin calculus. We provide two applications: (i) to a ne
Consider a parabolic stochastic PDE of the form $partial_t u=frac{1}{2}Delta u + sigma(u)eta$, where $u=u(t,,x)$ for $tge0$ and $xinmathbb{R}^d$, $sigma:mathbb{R}tomathbb{R}$ is Lipschitz continuous and non random, and $eta$ is a centered Gaussian no
We improve the constant $frac{pi}{2}$ in $L^1$-Poincare inequality on Hamming cube. For Gaussian space the sharp constant in $L^1$ inequality is known, and it is $sqrt{frac{pi}{2}}$. For Hamming cube the sharp constant is not known, and $sqrt{frac{pi
In this paper we present a new formulation of the change of gauge formulas in second order cosmological perturbation theory which unifies and simplifies known results. Our approach is based on defining new second order scalar perturbation variables b