ﻻ يوجد ملخص باللغة العربية
Subwavelength dielectric resonators assembled into metasurfaces have become versatile tools to miniaturise optical components towards the nanoscale. An important class of such functionalities is associated with asymmetries in both generation and propagation of light with respect to reversals of the positions of transmitters and receivers. A promising pathway towards miniaturisation of asymmetric light control is via nonlinear light-matter interactions. Here we demonstrate asymmetric parametric generation of light at the level of individual subwavelength resonators. We assemble thousands of dissimilar nonlinear dielectric resonators into translucent metasurfaces that produce images in the visible spectral range when illuminated by infrared radiation. By design, these nonlinear metasurfaces produce different and completely independent images for the reversed directions of illumination, that is when the positions of the infrared transmitter and the visible light receiver are exchanged. Nonlinearity-enabled asymmetric control of light at the level of individual subwavelength resonators opens an untapped potential for developing novel nanophotonic components via dense integration of large quantities of nonlinear resonators into compact metasurfaces.
The improvement of light-emitting diodes (LEDs) is one of the major goals of optoelectronics and photonics research. While emission rate enhancement is certainly one of the targets, in this regard, for LED integration to complex photonic devices, one
Electromagnetic fields coupled with mechanical degrees of freedom have recently shown exceptional and innovative applications, ultimately leading to mesoscopic optomechanical devices operating in the quantum regime of motion. Simultaneously, micromec
Hybrid dielectric metasurfaces have emerged as a promising approach to enhancing near field confinement and thus achieving high optical nonlinearity using low loss dielectrics. Additional flexibility in design and fabrication of hybrid metasurfaces a
We reveal a novel regime of photon-pair generation driven by the interplay of multiple bound states in the continuum resonances in nonlinear metasurfaces. This non-degenerate photon-pair generation is derived from the hyperbolic topology of the trans
Metasurface, a kind of two-dimensional structured medium, represents a novel platform to manipulate the propagation of light at subwavelength scale. In linear optical regime, many interesting topics such as planar metalens, metasurface optical hologr