ترغب بنشر مسار تعليمي؟ اضغط هنا

Asymmetric parametric generation of images with nonlinear dielectric metasurfaces

71   0   0.0 ( 0 )
 نشر من قبل Sergey Kruk
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Subwavelength dielectric resonators assembled into metasurfaces have become versatile tools to miniaturise optical components towards the nanoscale. An important class of such functionalities is associated with asymmetries in both generation and propagation of light with respect to reversals of the positions of transmitters and receivers. A promising pathway towards miniaturisation of asymmetric light control is via nonlinear light-matter interactions. Here we demonstrate asymmetric parametric generation of light at the level of individual subwavelength resonators. We assemble thousands of dissimilar nonlinear dielectric resonators into translucent metasurfaces that produce images in the visible spectral range when illuminated by infrared radiation. By design, these nonlinear metasurfaces produce different and completely independent images for the reversed directions of illumination, that is when the positions of the infrared transmitter and the visible light receiver are exchanged. Nonlinearity-enabled asymmetric control of light at the level of individual subwavelength resonators opens an untapped potential for developing novel nanophotonic components via dense integration of large quantities of nonlinear resonators into compact metasurfaces.



قيم البحث

اقرأ أيضاً

The improvement of light-emitting diodes (LEDs) is one of the major goals of optoelectronics and photonics research. While emission rate enhancement is certainly one of the targets, in this regard, for LED integration to complex photonic devices, one would require to have, additionally, precise control of the wavefront of the emitted light. Metasurfaces are spatial arrangements of engineered scatters that may enable this light manipulation capability with unprecedented resolution. Most of these devices, however, are only able to function properly under irradiation of light with a large spatial coherence, typically normally incident lasers. LEDs, on the other hand, have angularly broad, Lambertian-like emission patterns characterized by a low spatial coherence, which makes the integration of metasurface devices on LED architectures extremely challenging. A novel concept for metasurface integration on LED is proposed, using a cavity to increase the LED spatial coherence through an angular collimation. Due to the resonant character of the cavity, extending the spatial coherence of the emitted light does not come at the price of any reduction in the total emitted power. The experimental demonstration of the proposed concept is implemented on a GaP LED architecture including a hybrid metallic-Bragg cavity. By integrating a silicon metasurface on top we demonstrate two different functionalities of these compact devices: directional LED emission at a desired angle and LED emission of a vortex beam with an orbital angular momentum. The presented concept is general, being applicable to other incoherent light sources and enabling metasurfaces designed for plane waves to work with incoherent light emitters.
Electromagnetic fields coupled with mechanical degrees of freedom have recently shown exceptional and innovative applications, ultimately leading to mesoscopic optomechanical devices operating in the quantum regime of motion. Simultaneously, micromec hanical elements have provided new ways to enhance and manipulate the optical properties of passive photonic elements. Following this concept, in this article we show how combining a chiral metasurface with a GaAs suspended micromembrane can offer new scenarios for controlling the polarization state of near-infrared light beams. Starting from the uncommon properties of chiral metasurface to statically realize target polarization states and circular and linear dichroism, we report mechanically induced, ~300 kHz polarization modulation, which favorably compares, in terms of speed, with liquid-crystals commercial devices. Moreover, we demonstrate how the mechanical resonance can be non-trivially affected by the input light polarization (and chiral state) via a thermoelastic effect triggered by intracavity photons. This work inaugurates the field of Polarization Optomechanics, which could pave the way to fast polarimetric devices, polarization modulators and dynamically tunable chiral state generators and detectors, as well as giving access to new form of polarization nonlinearities and control.
Hybrid dielectric metasurfaces have emerged as a promising approach to enhancing near field confinement and thus achieving high optical nonlinearity using low loss dielectrics. Additional flexibility in design and fabrication of hybrid metasurfaces a llows dynamic control of light, which is value-added for a wider range of applications. Here, we demonstrate a tunable and efficient third harmonic generation (THG) via hybrid metasurfaces with phase change material Ge2Sb2Te5 (GST) deposited on top of amorphous silicon nanostructutes. Fano resonance is excited to confine the incident light inside the hybrid metasurfaces, and an experimental quality factor ($Q$-factor) of 125 is achieved at the fundamental pump wavelength around 1210 nm. We demonstrate the switching between a turn-on state of Fano resonance in the amorphous state of GST and a turn-off state in its crystalline state and also gradual multistate tuning of THG emission at its intermediate state. We achieve a high THG conversion efficiency of ${eta} = 2.9*10^{-6}$ %, which is more than ~32 times of that of a GST-based Fabry-P`erot cavity under a similar pump laser power, thanks to the enhanced field confinement due to the Fano resonance. Our results show the strong potential of GST-based hybrid dielectric metasurfaces for efficient and tunable nonlinear optical devices.
We reveal a novel regime of photon-pair generation driven by the interplay of multiple bound states in the continuum resonances in nonlinear metasurfaces. This non-degenerate photon-pair generation is derived from the hyperbolic topology of the trans verse phase-matching and can enable orders-of-magnitude enhancement of the photon rate and spectral brightness, as compared to the degenerate regime. We show that the entanglement of the photon-pairs can be tuned by varying the pump polarization, which can underpin future advances and applications of ultra-compact quantum light sources.
Metasurface, a kind of two-dimensional structured medium, represents a novel platform to manipulate the propagation of light at subwavelength scale. In linear optical regime, many interesting topics such as planar metalens, metasurface optical hologr aphy and so on have been widely investigated. Recently, metasurfaces go into nonlinear optical regime. While it is recognized that the local symmetry of the meta-atoms plays vital roles, its relationship with global symmetry of the nonlinear metasurfaces remains elusive. According to the Penrose tiling and the newly proposed hexagonal quasicrystalline tiling, here we designed and fabricated the nonlinear optical quasicrystal metasurfaces based on the geometric phase controlled plasmonic meta-atoms with local rotational symmetry. The second harmonic waves will be determined by both the tiling schemes of quasicrystal metasurfaces and the local symmetry of meta-atoms they consist of. The proposed concept opens new routes for designing nonlinear metasurface crystals with desired optical functionalities.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا