ﻻ يوجد ملخص باللغة العربية
Although the entropy of black holes in any diffeomorphism invariant theory of gravity can be expressed as the Wald entropy, the issue of whether the entropy always obeys the second law of black hole thermodynamics remains open. Since the nonminimal coupling interaction between gravity and the electromagnetic field in the general quadric corrected Einstein-Maxwell gravity can sufficiently influence the expression of the Wald entropy, we check whether the Wald entropy of black holes in the quadric corrected gravity still satisfies the second law. A quasistationary accreting process of black holes is first considered, which describes that black holes are perturbed by matter fields and eventually settle down to a stationary state. Two assumptions that the matter fields should obey the null energy condition and that a regular bifurcation surface exists on the background spacetime are further proposed. According to the two assumptions and the Raychaudhuri equation, we demonstrate that the Wald entropy monotonically increases along the future event horizon under the linear order approximation of the perturbation. This result indicates that the Wald entropy of black holes in the quadric corrected gravity strictly obeys the linearized second law of thermodynamics.
Since the entropy of stationary black holes in Horndeski gravity will be modified by the non-minimally coupling scalar field, a significant issue of whether the Wald entropy still obeys the linearized second law of black hole thermodynamics can be pr
Within the context of scalar-tensor gravity, we explore the generalized second law (GSL) of gravitational thermodynamics. We extend the action of ordinary scalar-tensor gravity theory to the case in which there is a non-minimal coupling between the s
We present a study of the generalized second law of thermodynamics in the scope of the f(R,T) theory of gravity, with R and T representing the Ricci scalar and trace of the energy-momentum tensor, respectively. From the energy-momentum tensor equatio
We consider a static self-gravitating perfect fluid system in Lovelock gravity theory. For a spacial region on the hypersurface orthogonal to static Killing vector, by the Tolmans law of temperature, the assumption of a fixed total particle number in
We investigate the solutions of black holes in $f(T)$ gravity with nonlinear power-law Maxwell field, where $T$ is the torsion scalar in teleparalelism. In particular, we introduce the Langranian with diverse dimensions in which the quadratic polynom