ﻻ يوجد ملخص باللغة العربية
Non-volatile random access memory (NVRAM) offers byte-addressable persistence at speeds comparable to DRAM. However, with caches remaining volatile, automatic cache evictions can reorder updates to memory, potentially leaving persistent memory in an inconsistent state upon a system crash. Flush and fence instructions can be used to force ordering among updates, but are expensive. This has motivated significant work studying how to write correct and efficient persistent programs for NVRAM. In this paper, we present FliT, a C++ library that facilitates writing efficient persistent code. Using the librarys default mode makes any linearizable data structure durable with minimal changes to the code. FliT avoids many redundant flush instructions by using a novel algorithm to track dirty cache lines. The FliT library also allows for extra optimizations, but achieves good performance even in its default setting. To describe the FliT librarys capabilities and guarantees, we define a persistent programming interface, called the P-V Interface, which FliT implements. The P-V Interface captures the expected behavior of code in which some instructions effects are persisted and some are not. We show that the interface captures the desired semantics of many practical algorithms in the literature. We apply the FliT library to four different persistent data structures, and show that across several workloads, persistence implementations, and data structure sizes, the FliT library always improves operation throughput, by at least $2.1times$ over a naive implementation in all but one workload.
Gradecast is a simple three-round algorithm presented by Feldman and Micali. The current work presents a very simple algorithm that utilized Gradecast to achieve Byzantine agreement. Two small variations of the presented algorithm lead to improved al
A surge in artificial intelligence and autonomous technologies have increased the demand toward enhanced edge-processing capabilities. Computational complexity and size of state-of-the-art Deep Neural Networks (DNNs) are rising exponentially with div
It was recently shown that a version of the greedy algorithm gives a construction of fault-tolerant spanners that is size-optimal, at least for vertex faults. However, the algorithm to construct this spanner is not polynomial-time, and the best-known
In this paper we describe the research and development activities in the Center for Efficient Exascale Discretization within the US Exascale Computing Project, targeting state-of-the-art high-order finite-element algorithms for high-order application
The problem of attaining energy efficiency in distributed systems is of importance, but a general, non-domain-specific theory of energy-minimal scheduling is far from developed. In this paper, we classify the problems of energy-minimal scheduling and