ﻻ يوجد ملخص باللغة العربية
Solar-, geo-, and supernova neutrino experiments are subject to muon-induced radioactive background. China Jinping Underground Laboratory (CJPL), with its unique advantage of 2400 m rock coverage and distance from nuclear power plants, is ideal for MeV-scale neutrino experiments. Using a 1-ton prototype detector of the Jinping Neutrino Experiment (JNE), we detected 343 high-energy cosmic-ray muons and (6.24$ pm $3.66) muon-induced neutrons from an 820.28-day dataset at the first phase of CJPL (CJPL-I). Based on the muon induced neutrons, we measured the corresponding neutron yield in liquid scintillator to be $(3.13 pm 1.84_{rm stat.}pm 0.70_{rm syst.})times 10^{-4}mu ^{-1}rm g^{-1}cm^{2}$ at an average muon energy of 340 GeV. This study provides the first measurement for this kind of neutron background at CJPL. A global fit including this measurement shows a power-law coefficient of (0.75$ pm $0.02) for the dependence of the neutron yield at liquid scintillator on muon energy.
China Jinping Underground Laboratory (CJPL) is ideal for studying solar-, geo-, and supernova neutrinos. A precise measurement of the cosmic-ray background would play an essential role in proceeding with the R&D research for these MeV-scale neutrino
We report on the measurements of the fluxes and spectra of the environmental fast neutron background at the China Jinping Underground Laboratory (CJPL) with a rock overburden of about 6700 meters water equivalent, using a liquid scintillator detector
The China Jinping Underground Laboratory, inaugurated in 2010, is an underground research facility with the deepest rock overburden and largest space by volume in the world. The first-generation science programs include dark matter searches conducted
China JinPing underground Laboratory (CJPL) is the deepest underground laboratory presently running in the world. In such a deep underground laboratory, the cosmic ray flux is a very important and necessary parameter for rare event experiments. A pla
We report the results of searches for solar axions and galactic dark matter axions or axion-like particles with CDEX-1 experiment at the China Jinping Underground Laboratory, using 335.6 kg-days of data from a p-type point-contact germanium detector.