ﻻ يوجد ملخص باللغة العربية
We present observations of ASASSN-20hx, a nearby ambiguous nuclear transient (ANT) discovered in NGC 6297 by the All-Sky Automated Survey for Supernovae (ASAS-SN). We observed ASASSN-20hx from $-$30 to 275 days relative to peak UV/optical emission using high-cadence, multi-wavelength spectroscopy and photometry. From Transiting Exoplanet Survey Satellite (TESS) data, we determine that the ANT began to brighten on 2020 June 23.3 with a linear rise in flux for at least the first week. ASASSN-20hx peaked in the UV/optical 29.5 days later on 2020 July 22.8 (MJD = 59052.8) at a bolometric luminosity of $L = (3.15 pm 0.04) times 10^{43}$ erg s$^{-1}$. The subsequent decline is slower than any TDE observed to date and consistent with many other ANTs. Compared to an archival X-ray detection, the X-ray luminosity of ASASSN-20hx increased by an order of magnitude to $L_{x} sim 1.5 times 10^{42}$ erg s$^{-1}$ and then slowly declined over time. The X-ray emission is well-fit by a power law with a photon index of $Gamma sim 2.3 - 2.6$. Both the optical and near infrared spectra of ASASSN-20hx lack emission lines, unusual for any known class of nuclear transient. While ASASSN-20hx has some characteristics seen in both tidal disruption events (TDEs) and active galactic nuclei (AGNs), it cannot be definitively classified with current data.
We present observations of the extremely luminous but ambiguous nuclear transient (ANT) ASASSN-17jz, spanning roughly 1200 days of the objects evolution. ASASSN-17jz was discovered by the All-Sky Automated Survey for Supernovae (ASAS-SN) in the galax
ASASSN-14ko is a recently discovered periodically flaring transient at the center of the AGN ESO 253-G003 with a slowly decreasing period. Here we show that the flares originate from the northern, brighter nucleus in this dual-AGN, post-merger system
Some transients, although classified as novae based on their maximum and early decline optical spectra, cast doubts on their true nature and whether nova impostors might exist. We monitored a candidate nova which displayed a distinctly unusual light
We present the ATLAS discovery and initial analysis of the first 18 days of the unusual transient event, ATLAS18qqn/AT2018cow. It is characterized by a high peak luminosity ($sim$1.7 $times$ 10$^{44}$ erg s$^{-1}$), rapidly evolving light curves ($>$
We present late-time observations by Swift and XMM-Newton of the tidal disruption event (TDE) ASASSN-15oi that reveal that the source brightened in the X-rays by a factor of $sim10$ one year after its discovery, while it faded in the UV/optical by a