ﻻ يوجد ملخص باللغة العربية
Annotating multiple organs in 3D medical images is time-consuming and costly. Meanwhile, there exist many single-organ datasets with one specific organ annotated. This paper investigates how to learn a multi-organ segmentation model leveraging a set of binary-labeled datasets. A novel Multi-teacher Single-student Knowledge Distillation (MS-KD) framework is proposed, where the teacher models are pre-trained single-organ segmentation networks, and the student model is a multi-organ segmentation network. Considering that each teacher focuses on different organs, a region-based supervision method, consisting of logits-wise supervision and feature-wise supervision, is proposed. Each teacher supervises the student in two regions, the organ region where the teacher is considered as an expert and the background region where all teachers agree. Extensive experiments on three public single-organ datasets and a multi-organ dataset have demonstrated the effectiveness of the proposed MS-KD framework.
Due to the intensive cost of labor and expertise in annotating 3D medical images at a voxel level, most benchmark datasets are equipped with the annotations of only one type of organs and/or tumors, resulting in the so-called partially labeling issue
Multi-organ segmentation has extensive applications in many clinical applications. To segment multiple organs of interest, it is generally quite difficult to collect full annotations of all the organs on the same images, as some medical centers might
Accurate and robust segmentation of abdominal organs on CT is essential for many clinical applications such as computer-aided diagnosis and computer-aided surgery. But this task is challenging due to the weak boundaries of organs, the complexity of t
Lesion detection is an important problem within medical imaging analysis. Most previous work focuses on detecting and segmenting a specialized category of lesions (e.g., lung nodules). However, in clinical practice, radiologists are responsible for f
Most existing approaches to train a unified multi-organ segmentation model from several single-organ datasets require simultaneously access multiple datasets during training. In the real scenarios, due to privacy and ethics concerns, the training dat