We present a mid-IR ($lambda approx$ 8.3 $mu$m) quantum well infrared photodetector (QWIP) fabricated on a mid-IR transparent substrate, allowing photodetection with illumination from either the front surface or through the substrate. The device is based on a 400 nm-thick GaAs/AlGaAs semiconductor QWIP heterostructure enclosed in a metal-insulator-metal (MIM) cavity and hosted on a mid-IR transparent ZnSe substrate. Metallic stripes are symmetrically patterned by e-beam lithography on both sides of the active region. The detector spectral coverage spans from $lambda approx 7.15$ $mu$m to $lambda approx 8.7$ $mu$m by changing the stripe width L - from L = 1.0 $mu$m to L = 1.3 $mu$m - thus frequency-tuning the optical cavity mode. Both micro-FTIR passive optical characterizations and photocurrent measurements of the two-port system are carried out. They reveal a similar spectral response for the two detector ports, with an experimentally measured T$_{BLIP}$ of $approx$ 200K.