ﻻ يوجد ملخص باللغة العربية
Thermal transport of nanocrystalline Si is of great importance for the application of thermoelectrics. A better understanding of the modal thermal conductivity of nanocrystalline Si will be expected to benefit the efficiency of thermoelectrics. In this work, the variance reduced Monte Carlo simulation with full band of phonon dispersion is applied to study the modal thermal conductivity of nanocrystalline Si. Importantly, the phonon modal transmissions across the grain boundaries which are modeled by the amorphous Si interface are calculated by the mode-resolved atomistic Greens function method. The predicted ratios of thermal conductivity of nanocrystalline Si to that of bulk Si agree well with that of the experimental measurements in a wide range of grain size. The thermal conductivity of nanocrystalline Si is decreased from 54 percent to 3 percent and the contribution of phonons with mean free path larger than the grain size increases from 30 percent to 96 percnet as the grain size decreases from 550 nm to 10 nm. This work demonstrates that the full band Monte Carlo simulation using phonon modal transmission by the mode-resolved atomistic Greens function method can capture the phonon transport picture in complex nanostructures, and therefore can provide guidance for designing high performance Si based thermoelectrics.
Avalanche photodiodes fabricated from AlInAsSb grown as a digital alloy exhibit low excess noise. In this paper, we investigate the band structure-related mechanisms that influence impact ionization. Band-structures calculated using an empirical tigh
Controlled anisotropic growth of two-dimensional materials provides an approach for the synthesis of large single crystals and nanoribbons, which are promising for applications as low-dimensional semiconductors and in next-generation optoelectronic d
A growth model and parameters obtained in our previous experimental (scanning tunneling microscopy, KMC) and theoretical (kinetic Monte Carlo simulations, KMC) studies of Ag/Si(111)-(7x7) heteroepitaxy were used to optimise growth conditions (tempera
In this paper we investigate warm electron injection in a double gate SONOS memory by means of 2D full-band Monte Carlo simulations of the Boltzmann Transport Equation (BTE). Electrons are accelerated in the channel by a drain-to-source voltage VDS s
Cubic hafnia (HfO$_2$) is of great interest for a number of applications in electronics because of its high dielectric constant. However, common defects in such applications degrade the properties of hafina. We have investigated the electronic proper