ﻻ يوجد ملخص باللغة العربية
$B$-site ordered 4$d^1$ and 5$d^1$ double perovskites have a number of potential novel ground states including multipolar order, quantum spin liquids and valence bond glass states. These arise from the complex interactions of spin-orbital entangled $J_{eff}$ = 3/2 pseudospins on the geometrically frustrated fcc lattice. The 4$d^1$ Mo$^{5+}$ perovskite Ba$_2$YMoO$_6$ has been suggested to have a valence bond glass ground state. Here we report on the low temperature properties of powder samples of isostructural Ba$_2$LuMoO$_6$: the only other known cubic 4$d^1$ perovskite with one magnetic cation. Our muon spectroscopy experiments show that magnetism in this material remains dynamic down to 60 mK without any spin freezing or magnetic order. A singlet-triplet excitation with a gap of $Delta$ = 28 meV is observed in inelastic neutron scattering. These results are interpreted as a disordered valence bond glass ground state similar to Ba$_2$YMoO$_6$. Our results highlight the differences of the 4$d^1$ double perovskites in comparison to cubic 5$d^1$ analogues, which have both magnetic and multipolar order.
B-site ordered A$_2$BBO$_6$ double perovskites have a variety of applications as magnetic materials. Here we show that diamagnetic $d^{10}$ and $d^0$ B cations have a significant effect on the magnetic interactions in these materials. We present a ne
Spin wave dispersion in the frustrated fcc type-III antiferromagnet MnS$_2$ has been determined by inelastic neutron scattering using a triple-axis spectrometer. Existence of multiple spin wave branches, with significant separation between high-energ
We have performed Diffusion Quantum Monte Carlo simulations of Li clusters showing that Resonating-Valence-Bond (RVB) pairing correlations between electrons provide a substantial contribution to the cohesive energy. The RVB effects are identified in
Remarkably, doping isovalent $d^{10}$ and $d^0$ cations onto the $B$ site in $A_2B$$B$O$_6$ double perovskites has the power to direct the magnetic interactions between magnetic $B$ cations. This is due to changes in orbital hybridization, which favo
We establish the double perovskite Ba$_2$CeIrO$_6$ as a nearly ideal model system for j=1/2 moments, with resonant inelastic x-ray scattering indicating a deviation of less than 1% from the ideally cubic j=1/2 state. The local j=1/2 moments form an f