ﻻ يوجد ملخص باللغة العربية
Here we show that, despite a massive incident flux of energetic species, plasmas can induce transient cooling of a material surface. Using time-resolved optical thermometry in-situ with this plasma excitation, we reveal the novel underlying physics that drive this `plasma cooling that is driven by the diverse chemical and energetic species that comprise this fourth state of matter. We show that the photons and massive particles in the plasma impart energy to different chemical species on a surface, leading to local and temporally changing temperatures that lead to both increases and decreases in temperature on the surface of the sample, even though energy is being imparted to the material. This balance comes from the interplay between chemical reactions, momentum transfer, and energy exchange which occur on different time scales over the course of picoseconds to milliseconds. Thus, we show that through energetically exciting a material with a plasma, we can induce cooling, which can lead to revolutionary advances in refrigeration and thermal mitigation with this new process that is not inhibited by the same limitations in the current state-of-the-art systems.
We propose to measure the surface charge accumulating at the interface between a plasma and a dielectric by infrared spectroscopy using the dielectric as a multi-internal reflection element. The surplus charge leads to an attenuation of the transmitt
Laser cooling of a solid is achieved when a coherent laser illuminates the material, and the heat is extracted by resulting anti-Stokes fluorescence. Over the past year, net solid-state laser cooling was successfully demonstrated for the first time i
A simple vibrational model of heat transfer in two-dimensional (2D) fluids relates the heat conductivity coefficient to the longitudinal and transverse sound velocities, specific heat, and the mean interatomic separation. This model is demonstrated n
A dynamic mitigation mechanism of the two-stream instability is discussed based on a phase control for plasma and fluid instabilities. The basic idea for the dynamic mitigation mechanism by the phase control was proposed in the paper [Phys. Plasmas 1
The interaction of ultra-intense lasers with solid foils can be used to accelerate ions to high energies well exceeding 60 MeV. The non-linear relativistic motion of electrons in the intense laser radiation leads to their acceleration and later to th