ترغب بنشر مسار تعليمي؟ اضغط هنا

Estimation of radiative half-life of $^{229m}$Th by half-life measurement of other nuclear excited states in $^{229}$Th

91   0   0.0 ( 0 )
 نشر من قبل Yudai Shigekawa Dr.
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We perform coincidence measurements between $alpha$ particles and $gamma$ rays from a $^{233}$U source to determine the half-lives of the excited state in a $^{229}$Th nucleus. We first prove that the half-lives of 42.43- and 164.53-keV states are consistent with literature values, whereas that of the 97.14-keV state (93(7) ps) deviates from a previously measured value (147(12) ps). The half-lives of 71.83- and 163.25-keV states are determined for the first time. Based on the obtained half-lives and the Alaga rule, we estimate the radiative half-life of the low-energy isomeric state ($^{229m}$Th) to be $5.0(11)times10^{3}$ s, which is one of the key parameters for the frequency standard based on $^{229}$Th.



قيم البحث

اقرأ أيضاً

The half-life of the $^{20}$F ground state has been measured using a radioactive beam implanted in a plastic scintillator and recording $betagamma$ coincidences together with four CsI(Na) detectors. The result, $T_{1/2} = 11.0011(69)_{rm stat}(30)_{r m sys}$~s, is at variance by 17 combined standard deviations with the two most precise results. The present value revives the poor consistency of results for this half-life and calls for a new measurement, with a technique having different sources of systematic effects, to clarify the discrepancy.
The low-lying isomeric state of $^{229}$Th provides unique opportunities for high-resolution laser spectroscopy of the atomic nucleus. We determine the energy of this isomeric state by taking the absolute energy difference between the excitation ener gy required to populate the 29.2-keV state from the ground-state and the energy emitted in its decay to the isomeric excited state. A transition-edge sensor microcalorimeter was used to measure the absolute energy of the 29.2-keV $gamma$-ray. Together with the cross-band transition energy (29.2 keV$to$ground) and the branching ratio of the 29.2-keV state measured in a recent study, the isomer energy was determined to be 8.30$pm$0.92 eV. Our result is in agreement with latest measurements based on different experimental techniques, which further confirms that the isomeric state of $^{229}$Th is in the laser-accessible vacuum ultraviolet range.
Half-life values are widely used in nuclear chemistry to model the exponential decay of the quantified radionuclides. The analysis of existing data reveals a general lack of information on the performed experiments and an almost complete absence of u ncertainty budgets. This is the situation for 31Si, the radionuclide produced via neutron capture reaction recently used to quantify trace amounts of 30Si in a sample of the silicon material highly enriched in 28Si and used for the determination of the Avogadro constant. In order to improve the quality of the now recommended 157.36(26) min value, we carried out repeated observations of the 31Si decay rate via gamma-ray spectrometry measurements. This paper reports the result we obtained, including details of the experiment and the evaluation of the uncertainty.
381 - Gy. Gyurky , Z. Halasz , G.G. Kiss 2019
The literature half-life value of 65Ga is based on only one experiment carried out more than 60 years ago and it has a relatively large uncertainty. In the present work this half-life is determined based on the counting of the gamma-rays following th e beta-decay of 65Ga. Our new recommended half-life is 15.133 +- 0.028 min which is in agreement with the literature value but almost one order of magnitude more precise.
326 - I. Matea , J. Souin , J. Aysto 2008
The beta-decay half-life of 26Si was measured with a relative precision of 1.4*10e3. The measurement yields a value of 2.2283(27) s which is in good agreement with previous measurements but has a precision that is better by a factor of 4. In the same experiment, we have also measured the non-analogue branching ratios and could determine the super-allowed one with a precision similar to the previously reported measurements. The experiment was done at the Accelerator Laboratory of the University of Jyvaskyla where we used the IGISOL technique with the JYFLTRAP facility to separate pure samples of 26Si.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا