Searching for a Galactic component in the IceCube track-like neutrino events


الملخص بالإنكليزية

Searches for spatial associations between high-energy neutrinos observed at the IceCube Neutrino Observatory and known astronomical objects may hold the key to establishing the neutrinos origins and the origins of hadronic cosmic rays. While extragalactic sources like the blazar TXS 0506+056 merit significant attention, Galactic sources may also represent part of the puzzle. Here, we explore whether open clusters and supernova remnants in the Milky Way contribute measurably to the IceCube track-like neutrino events above 200 TeV. By searching for positional coincidences with catalogs of known astronomical objects, we can identify and investigate neutrino events whose origins are potentially Galactic. We use Monte Carlo randomization together with models of the Galactic plane in order to determine whether these coincidences are more likely to be causal associations or random chance. In all analyses presented, the number of coincidences detected was found to be consistent with the null hypothesis of chance coincidence. Our results imply that the combined contribution of Galactic open clusters and supernova remnants to the track-like neutrino events detected at IceCube is well under 30%. This upper limit is compatible with the results presented in other Galactic neutrino studies.

تحميل البحث