ﻻ يوجد ملخص باللغة العربية
Click-through rate prediction is one of the core tasks in commercial recommender systems. It aims to predict the probability of a user clicking a particular item given user and item features. As feature interactions bring in non-linearity, they are widely adopted to improve the performance of CTR prediction models. Therefore, effectively modelling feature interactions has attracted much attention in both the research and industry field. The current approaches can generally be categorized into three classes: (1) naive methods, which do not model feature interactions and only use original features; (2) memorized methods, which memorize feature interactions by explicitly viewing them as new features and assigning trainable embeddings; (3) factorized methods, which learn latent vectors for original features and implicitly model feature interactions through factorization functions. Studies have shown that modelling feature interactions by one of these methods alone are suboptimal due to the unique characteristics of different feature interactions. To address this issue, we first propose a general framework called OptInter which finds the most suitable modelling method for each feature interaction. Different state-of-the-art deep CTR models can be viewed as instances of OptInter. To realize the functionality of OptInter, we also introduce a learning algorithm that automatically searches for the optimal modelling method. We conduct extensive experiments on four large datasets. Our experiments show that OptInter improves the best performed state-of-the-art baseline deep CTR models by up to 2.21%. Compared to the memorized method, which also outperforms baselines, we reduce up to 91% parameters. In addition, we conduct several ablation studies to investigate the influence of different components of OptInter. Finally, we provide interpretable discussions on the results of OptInter.
The CTR (Click-Through Rate) prediction plays a central role in the domain of computational advertising and recommender systems. There exists several kinds of methods proposed in this field, such as Logistic Regression (LR), Factorization Machines (F
Cross features play an important role in click-through rate (CTR) prediction. Most of the existing methods adopt a DNN-based model to capture the cross features in an implicit manner. These implicit methods may lead to a sub-optimized performance due
Due to its linear complexity, naive Bayes classification remains an attractive supervised learning method, especially in very large-scale settings. We propose a sparse version of naive Bayes, which can be used for feature selection. This leads to a c
In the Click-Through Rate (CTR) prediction scenario, users sequential behaviors are well utilized to capture the user interest in the recent literature. However, despite being extensively studied, these sequential methods still suffer from three limi
The prediction of click-through rate (CTR) is crucial for industrial applications, such as online advertising. AUC is a commonly used evaluation indicator for CTR models. For advertising platforms, online performance is generally evaluated by CPM. Ho