ﻻ يوجد ملخص باللغة العربية
Digital In-memory computing improves energy efficiency and throughput of a data-intensive process, which incur memory thrashing and, resulting multiple same memory accesses in a von Neumann architecture. Digital in-memory computing involves accessing multiple SRAM cells simultaneously, which may result in a bit flip when not timed critically. Therefore we discuss the transient voltage characteristics of the bitlines during an SRAM compute. To improve the packaging density and also avoid MOSFET down-scaling issues, we use a 7-nm predictive PDK which uses a finFET node. The finFET process has discrete fins and a lower Voltage supply, which makes the design of in-memory compute SRAM difficult. In this paper, we design a 6T SRAM cell in 7-nm finFET node and compare its SNMs with a UMC 28nm node implementation. Further, we design and simulate the rest of the SRAM peripherals, and in-memory computation for an advanced finFET node.
This paper describes how 3D XPoint memory arrays can be used as in-memory computing accelerators. We first show that thresholded matrix-vector multiplication (TMVM), the fundamental computational kernel in many applications including machine learning
A compact, accurate, and bitwidth-programmable in-memory computing (IMC) static random-access memory (SRAM) macro, named CAP-RAM, is presented for energy-efficient convolutional neural network (CNN) inference. It leverages a novel charge-domain multi
The amount of CO$_2$ emitted per kilowatt-hour on an electricity grid varies by time of day and substantially varies by location due to the types of generation. Networked collections of warehouse scale computers, sometimes called Hyperscale Computing
The inherent dynamics of the neuron membrane potential in Spiking Neural Networks (SNNs) allows processing of sequential learning tasks, avoiding the complexity of recurrent neural networks. The highly-sparse spike-based computations in such spatio-t
3D integration, i.e., stacking of integrated circuit layers using parallel or sequential processing is gaining rapid industry adoption with the slowdown of Moores law scaling. 3D stacking promises potential gains in performance, power and cost but th