ﻻ يوجد ملخص باللغة العربية
The characteristic index of a locally compact connected group $G$ is the non-negative integer $d$ for which we have a homeomorphism $Gcong Ktimes mathbb{R}^d$ with $Kle G$ maximal compact. We prove that the characteristic indices of closed connected subgroups are dominated by those of the ambient groups.
We give some new characterizations of exactness for locally compact second countable groups. In particular, we prove that a locally compact second countable group is exact if and only if it admits a topologically amenable action on a compact Hausdorf
We announce various results concerning the structure of compactly generated simple locally compact groups. We introduce a local invariant, called the structure lattice, which consists of commensurability classes of compact subgroups with open normali
The chain group $C(G)$ of a locally compact group $G$ has one generator $g_{rho}$ for each irreducible unitary $G$-representation $rho$, a relation $g_{rho}=g_{rho}g_{rho}$ whenever $rho$ is weakly contained in $rhootimes rho$, and $g_{rho^*}=g_{rho}
It is shown that a closed solvable subgroup of a connected Lie group is compactly generated. In particular, every discrete solvable subgroup of a connected Lie group is finitely generated. Generalizations to locally compact groups are discussed as far as they carry.
This book offers to study locally compact groups from the point of view of appropriate metrics that can be defined on them, in other words to study Infinite groups as geometric objects, as Gromov writes it in the title of a famous article. The theme