Normally, the half-harmonic oscillator is active when $x>0$ and absent when $x<0$. From a canonical quantization perspective, this leads to odd eigenfunctions being present while even eigenfunctions are absent. In that case, only the usual odd eigenfunctions will appear if the wall slides to negative infinity. However, if an affine quantization is used, sliding the wall away shows that all the odd and even eigenfunctions are encountered, exactly like any full-harmonic oscillator. We provide numerical support for this.