ﻻ يوجد ملخص باللغة العربية
In bubble-assisted Liquid HoleMultipliers(LHM), developed for noble-liquid radiation detectors, the stability of the bubble and the electro-mechanical properties of the liquid-to-gas interface play a dominant role in the detector performance. A model is proposed to evaluate the static equilibrium configurations of a bubble sustained underneath a perforated electrode immersed in a liquid. For the first time bubbles were optically observed in LAr; their properties were studied in contact with different material surfaces. This permitted investigating the bubble-electrodynamics via numerical simulations; it was shown that the electric field acts as an additional pressure term on the bubble meniscus. The predictions for the liquid-to-gas interface were successfully validated using X-ray micro-CT in water and in silicone oil at STP. The proposed model and the results of this study are an important milestone towards understanding and optimizing the parameters of LHM-based noble-liquid detectors.
We report on recent advances in the operation of bubble-assisted Liquid Hole Multipliers (LHM). By confining a vapor bubble under or adjacent to a perforated electrode immersed in liquid xenon, we could record both radiation-induced ionization electr
The bubble-assisted Liquid Hole Multiplier (LHM) is a novel concept for the combined detection of ionization electrons and scintillation photons in noble-liquid time projection chambers. It consists of a perforated electrode immersed in the noble liq
First imaging results in liquid xenon of a Liquid Hole Multiplier (LHM) coupled to a Quad-Silicon Photomultiplier (SiPM) array are presented. Ionization electrons deposited in the noble liquid by 5.5 MeV alpha particles, are collected into the holes
Bubble formation in liquid xenon underneath a Thick Gaseous Electron Multiplier (THGEM) electrode immersed in liquid xenon was observed with a CCD camera. With voltage across the THGEM, the appearance of bubbles was correlated with that of electrolum
Gas electron multipliers (GEMs) have been overcoated with a high resistivity 10e14 - 10e15 Ohms / square amorphous carbon layer. The coating avoids charging up of the holes and provides a constant gain immediately after switching on independent of th