ترغب بنشر مسار تعليمي؟ اضغط هنا

Evaluation on characterization of acoustic emission of brittle rocks from the experiment to numerical simulation

105   0   0.0 ( 0 )
 نشر من قبل Lei Xue
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Acoustic emission (AE) characterization is an effective technique to indirectly capture the progressive failure process of the brittle rock. In previous studies, both the experiment and numerical simulation were adopted to investigate AE characteristics of the brittle rock. However, as the most popular numerical model, the moment tensor model (MTM) did not reproduce the monitoring and analyzing manner of AE signals from the physical experiment. Consequently, its result could not be constrained by the experimental result. It is thus necessary to evaluate the consistency and compatibility between the experiment and MTM. To fulfill this, we developed a particle-velocity-based model (PVBM) which enabled directly monitor and analyze the particle velocity in the numerical model and had good robustness. The PVBM imitated the actual experiment and could fill in gaps between the experiment and MTM. AE experiments of Marine shale under uniaxial compression were carried out, of which results were simulated by MTM. In general, the variation trend of the experimental result could be presented by MTM. Nevertheless, magnitudes of AE parameters by MTM presented notable differences with more than several orders compared with those by the experiment. We sequentially used PVBM as a proxy to analyze these discrepancies quantitatively and make a systematical evaluation on AE characterization of brittle rocks from the experiment to numerical simulation, considering the influence of wave reflection, energy geometrical diffusion, viscous attenuation, particle size as well as progressive deterioration of rock material. It was suggested that only the combination of MTM and PVBM could reasonably and accurately acquire AE characteristics of the actual AE experiment of brittle rocks by making full use of their respective advantages.



قيم البحث

اقرأ أيضاً

We describe the LHCb detector simulation application (Gauss) based on the Geant4 toolkit. The application is built using the Gaudi software framework, which is used for all event-processing applications in the LHCb experiment. The existence of an und erlying framework allows several common basic services such as persistency, interactivity, as well as detector geometry description or particle data to be shared between simulation, reconstruction and analysis applications. The main benefits of such common services are coherence between different event-processing stages as well as reduced development effort. The interfacing to Geant4 toolkit is realized through a facade (GiGa) which minimizes the coupling to the simulation engine and provides a set of abstract interfaces for configuration and event-by-event communication. The Gauss application is composed of three main blocks, i.e. event generation, detector response simulation and digitization which reflect the different stages performed during the simulation job. We describe the overall design as well as the details of Gauss application with a special emphasis on the configuration and control of the underlying simulation engine. We also briefly mention the validation strategy and the planing for the LHCb experiment simulation.
Surface acoustic waveguides are increasing in interest for (bio)chemical detection. The surface mass modification leads to measurable changes in the propagation properties of the waveguide. Among a wide variety of waveguides, Love mode has been inves tigated because of its high gravimetric sensitivity. The acoustic signal launched and detected in the waveguide by electrical transducers is accompanied by an electromagnetic wave; the interaction of the two signals, easily enhanced by the open structure of the sensor, creates interference patterns in the transfer function of the sensor. The influence of these interferences on the gravimetric sensitivity is presented, whereby the structure of the entire sensor is modelled. We show that electromagnetic interferences generate an error in the experimental value of the sensitivity. This error is different for the open and the closed loop configurations of the sensor. The theoretical approach is completed by the experimentation of an actual Love mode sensor operated under liquid in open loop configuration. The experiment indicates that the interaction depends on the frequency and the mass modifications.
Segment lengths along major strike-slip faults exhibit a size dependency related to the brittle crust thickness. These segments result in the formation of the localized P-shear deformation crossing and connecting the initial Riedels structures (i.e. en-echelon fault structures) which formed during the genesis stage of the fault zone. Mechanical models show that at all scales, the geometrical characteristics of the Riedels exhibit dependency on the thickness of the brittle layer. Combining the results of our mechanical discrete element model with several analogue experiments using sand, clay and gypsum, we have formulated a relationship between the orientation and spacing of Riedels and the thickness of the brittle layer. From this relationship, we derive that for a pure strike-slip mode, the maximum spacing between the Riedels are close to three times the thickness. For a transtensional mode, as the extensive component becomes predominant, the spacing distance at the surface become much smaller than the thickness. Applying this relationship to several well-characterized strike-slip faults on Earth, we show that the predicted brittle thickness is consistent with the seismogenic depth. Supposing the ubiquity of this phenomenon, we extent this relationship to characterize en-echelon structures observed on Mars, in the Memnonia region located West of Tharsis. Assuming that the outer ice shells of Ganymede, Enceladus and Europa, exhibit a brittle behavior, we suggest values of the corresponding apparent brittle thicknesses.
76 - M. Bonesini 2015
The international Muon Ionization Cooling Experiment (MICE) will perform a systematic investigation of ionization cooling of a muon beam. The demonstration is based on a simplified version of a neutrino factory cooling channel. As the emittance measu rement will be done on a particle-by-particle basis, sophisticated beam instrumentation has been developed to measure particle coordinates and timing vs RF. The muon beamline has been characterized and a preliminary measure of the beam emittance, using a particle-by-particle method with only the TOF detector system, has been performed (MICE STEP I). Data taking for the study of the properties that determine the cooling performance (MICE Step IV) has just started in 2015, while the demonstration of ionization cooling with re-acceleration is foreseen for 2017.
XENON is a dark matter direct detection project, consisting of a time projection chamber (TPC) filled with liquid xenon as detection medium. The construction of the next generation detector, XENON1T, is presently taking place at the Laboratori Nazion ali del Gran Sasso (LNGS) in Italy. It aims at a sensitivity to spin-independent cross sections of $2 cdot 10^{-47} ~ mathrm{cm}^{mathrm{2}}$ for WIMP masses around 50 GeV/c$^{2}$, which requires a background reduction by two orders of magnitude compared to XENON100, the current generation detector. An active system that is able to tag muons and muon-induced backgrounds is critical for this goal. A water Cherenkov detector of $sim$10 m height and diameter has been therefore developed, equipped with 8 inch photomultipliers and cladded by a reflective foil. We present the design and optimization study for this detector, which has been carried out with a series of Monte Carlo simulations. The muon veto will reach very high detection efficiencies for muons ($>99.5%$) and showers of secondary particles from muon interactions in the rock ($>70%$). Similar efficiencies will be obtained for XENONnT, the upgrade of XENON1T, which will later improve the WIMP sensitivity by another order of magnitude. With the Cherenkov water shield studied here, the background from muon-induced neutrons in XENON1T is negligible.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا