ﻻ يوجد ملخص باللغة العربية
ANTARES is currently the largest undersea neutrino telescope, located in the Mediterranean Sea and taking data since 2007. It consists of a 3D array of photo sensors, instrumenting about 10Mt of seawater to detect Cherenkov light induced by secondary particles from neutrino interactions. The event reconstruction and background discrimination is challenging and machine-learning techniques are explored to improve the performance. In this contribution, two case studies using deep convolutional neural networks are presented. In the first one, this approach is used to improve the direction reconstruction of low-energy single-line events, for which the reconstruction of the azimuth angle of the incoming neutrino is particularly difficult. We observe a promising improvement in resolution over classical reconstruction techniques and expect to at least double our sensitivity in the low-energy range, important for dark matter searches. The second study employs deep learning to reconstruct the visible energy of neutrino interactions of all flavors and for the multi-line setup of the full detector.
Muons are the most abundant charged particles arriving at sea level originating from the decay of secondary charged pions and kaons. These secondary particles are created when high-energy cosmic rays hit the atmosphere interacting with air nuclei ini
Reconstructing the position of an interaction for any dual-phase time projection chamber (TPC) with the best precision is key to directly detecting Dark Matter. Using the likelihood-free framework, a new algorithm to reconstruct the 2-D (x; y) positi
The ANTARES deep-sea neutrino telescope comprises a three-dimensional array of photomultipliers to detect the Cherenkov light induced by upgoing relativistic charged particles originating from neutrino interactions in the vicinity of the detector. Th
Arrays of imaging atmospheric Cherenkov telescopes (IACT) are superb instruments to probe the very-high-energy gamma-ray sky. This type of telescope focuses the Cherenkov light emitted from air showers, initiated by very-high-energy gamma rays and co
Muons created by $ u_mu$ charged current (CC) interactions in the water surrounding the ANTARES neutrino telescope have been almost exclusively used so far in searches for cosmic neutrino sources. Due to their long range, highly energetic muons induc