ترغب بنشر مسار تعليمي؟ اضغط هنا

Generalizing Fairness: Discovery and Mitigation of Unknown Sensitive Attributes

223   0   0.0 ( 0 )
 نشر من قبل William Paul
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Ensuring trusted artificial intelligence (AI) in the real world is an critical challenge. A still largely unexplored task is the determination of the major factors within the real world that affect the behavior and robustness of a given AI module (e.g. weather or illumination conditions). Specifically, here we seek to discover the factors that cause AI systems to fail, and to mitigate their influence. The identification of these factors usually heavily relies on the availability of data that is diverse enough to cover numerous combinations of these factors, but the exhaustive collection of this data is onerous and sometimes impossible in complex environments. This paper investigates methods that discover and mitigate the effects of semantic sensitive factors within a given dataset. We also here generalize the definition of fairness, which normally only addresses socially relevant factors, and widen it to deal with -- more broadly -- the desensitization of AI systems with regard to all possible aspects of variation in the domain. The proposed methods which discover these major factors reduce the potentially onerous demands of collecting a sufficiently diverse dataset. In experiments using road sign (GTSRB) and facial imagery (CelebA) datasets, we show the promise of these new methods and show that they outperform state of the art approaches.



قيم البحث

اقرأ أيضاً

We study the problem of learning fair prediction models for unseen test sets distributed differently from the train set. Stability against changes in data distribution is an important mandate for responsible deployment of models. The domain adaptatio n literature addresses this concern, albeit with the notion of stability limited to that of prediction accuracy. We identify sufficient conditions under which stable models, both in terms of prediction accuracy and fairness, can be learned. Using the causal graph describing the data and the anticipated shifts, we specify an approach based on feature selection that exploits conditional independencies in the data to estimate accuracy and fairness metrics for the test set. We show that for specific fairness definitions, the resulting model satisfies a form of worst-case optimality. In context of a healthcare task, we illustrate the advantages of the approach in making more equitable decisions.
Machine learning systems generally assume that the training and testing distributions are the same. To this end, a key requirement is to develop models that can generalize to unseen distributions. Domain generalization (DG), i.e., out-of-distribution generalization, has attracted increasing interests in recent years. Domain generalization deals with a challenging setting where one or several different but related domain(s) are given, and the goal is to learn a model that can generalize to an unseen test domain. Great progress has been made in the area of domain generalization for years. This paper presents the first review of recent advances in this area. First, we provide a formal definition of domain generalization and discuss several related fields. We then thoroughly review the theories related to domain generalization and carefully analyze the theory behind generalization. We categorize recent algorithms into three classes: data manipulation, representation learning, and learning strategy, and present several popular algorithms in detail for each category. Third, we introduce the commonly used datasets and applications. Finally, we summarize existing literature and present some potential research topics for the future.
We propose a new clustering algorithm, Extended Affinity Propagation, based on pairwise similarities. Extended Affinity Propagation is developed by modifying Affinity Propagation such that the desirable features of Affinity Propagation, e.g., exempla rs, reasonable computational complexity and no need to specify number of clusters, are preserved while the shortcomings, e.g., the lack of global structure discovery, that limit the applicability of Affinity Propagation are overcome. Extended Affinity Propagation succeeds not only in achieving this goal but can also provide various additional insights into the internal structure of the individual clusters, e.g., refined confidence values, relative cluster densities and local cluster strength in different regions of a cluster, which are valuable for an analyst. We briefly discuss how these insights can help in easily tuning the hyperparameters. We also illustrate these desirable features and the performance of Extended Affinity Propagation on various synthetic and real world datasets.
Reinforcement learning requires manual specification of a reward function to learn a task. While in principle this reward function only needs to specify the task goal, in practice reinforcement learning can be very time-consuming or even infeasible u nless the reward function is shaped so as to provide a smooth gradient towards a successful outcome. This shaping is difficult to specify by hand, particularly when the task is learned from raw observations, such as images. In this paper, we study how we can automatically learn dynamical distances: a measure of the expected number of time steps to reach a given goal state from any other state. These dynamical distances can be used to provide well-shaped reward functions for reaching new goals, making it possible to learn complex tasks efficiently. We show that dynamical distances can be used in a semi-supervised regime, where unsupervised interaction with the environment is used to learn the dynamical distances, while a small amount of preference supervision is used to determine the task goal, without any manually engineered reward function or goal examples. We evaluate our method both on a real-world robot and in simulation. We show that our method can learn to turn a valve with a real-world 9-DoF hand, using raw image observations and just ten preference labels, without any other supervision. Videos of the learned skills can be found on the project website: https://sites.google.com/view/dynamical-distance-learning.
In this paper, we cast fair machine learning as invariant machine learning. We first formulate a version of individual fairness that enforces invariance on certain sensitive sets. We then design a transport-based regularizer that enforces this versio n of individual fairness and develop an algorithm to minimize the regularizer efficiently. Our theoretical results guarantee the proposed approach trains certifiably fair ML models. Finally, in the experimental studies we demonstrate improved fairness metrics in comparison to several recent fair training procedures on three ML tasks that are susceptible to algorithmic bias.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا