ترغب بنشر مسار تعليمي؟ اضغط هنا

Multi-Scale Feature and Metric Learning for Relation Extraction

68   0   0.0 ( 0 )
 نشر من قبل Mi Zhang
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Existing methods in relation extraction have leveraged the lexical features in the word sequence and the syntactic features in the parse tree. Though effective, the lexical features extracted from the successive word sequence may introduce some noise that has little or no meaningful content. Meanwhile, the syntactic features are usually encoded via graph convolutional networks which have restricted receptive field. To address the above limitations, we propose a multi-scale feature and metric learning framework for relation extraction. Specifically, we first develop a multi-scale convolutional neural network to aggregate the non-successive mainstays in the lexical sequence. We also design a multi-scale graph convolutional network which can increase the receptive field towards specific syntactic roles. Moreover, we present a multi-scale metric learning paradigm to exploit both the feature-level relation between lexical and syntactic features and the sample-level relation between instances with the same or different classes. We conduct extensive experiments on three real world datasets for various types of relation extraction tasks. The results demonstrate that our model significantly outperforms the state-of-the-art approaches.



قيم البحث

اقرأ أيضاً

Open relation extraction is the task of extracting open-domain relation facts from natural language sentences. Existing works either utilize heuristics or distant-supervised annotations to train a supervised classifier over pre-defined relations, or adopt unsupervised methods with additional assumptions that have less discriminative power. In this work, we proposed a self-supervised framework named SelfORE, which exploits weak, self-supervised signals by leveraging large pretrained language model for adaptive clustering on contextualized relational features, and bootstraps the self-supervised signals by improving contextualized features in relation classification. Experimental results on three datasets show the effectiveness and robustness of SelfORE on open-domain Relation Extraction when comparing with competitive baselines.
102 - Ning Ding , Xiaobin Wang , Yao Fu 2021
Recognizing relations between entities is a pivotal task of relational learning. Learning relation representations from distantly-labeled datasets is difficult because of the abundant label noise and complicated expressions in human language. This pa per aims to learn predictive, interpretable, and robust relation representations from distantly-labeled data that are effective in different settings, including supervised, distantly supervised, and few-shot learning. Instead of solely relying on the supervision from noisy labels, we propose to learn prototypes for each relation from contextual information to best explore the intrinsic semantics of relations. Prototypes are representations in the feature space abstracting the essential semantics of relations between entities in sentences. We learn prototypes based on objectives with clear geometric interpretation, where the prototypes are unit vectors uniformly dispersed in a unit ball, and statement embeddings are centered at the end of their corresponding prototype vectors on the surface of the ball. This approach allows us to learn meaningful, interpretable prototypes for the final classification. Results on several relation learning tasks show that our model significantly outperforms the previous state-of-the-art models. We further demonstrate the robustness of the encoder and the interpretability of prototypes with extensive experiments.
We present a joint model for entity-level relation extraction from documents. In contrast to other approaches - which focus on local intra-sentence mention pairs and thus require annotations on mention level - our model operates on entity level. To d o so, a multi-task approach is followed that builds upon coreference resolution and gathers relevant signals via multi-instance learning with multi-level representations combining global entity and local mention information. We achieve state-of-the-art relation extraction results on the DocRED dataset and report the first entity-level end-to-end relation extraction results for future reference. Finally, our experimental results suggest that a joint approach is on par with task-specific learning, though more efficient due to shared parameters and training steps.
297 - Zhilei Liu , Yunpeng Wu , Le Li 2020
Previous research on face restoration often focused on repairing a specific type of low-quality facial images such as low-resolution (LR) or occluded facial images. However, in the real world, both the above-mentioned forms of image degradation often coexist. Therefore, it is important to design a model that can repair LR occluded images simultaneously. This paper proposes a multi-scale feature graph generative adversarial network (MFG-GAN) to implement the face restoration of images in which both degradation modes coexist, and also to repair images with a single type of degradation. Based on the GAN, the MFG-GAN integrates the graph convolution and feature pyramid network to restore occluded low-resolution face images to non-occluded high-resolution face images. The MFG-GAN uses a set of customized losses to ensure that high-quality images are generated. In addition, we designed the network in an end-to-end format. Experimental results on the public-domain CelebA and Helen databases show that the proposed approach outperforms state-of-the-art methods in performing face super-resolution (up to 4x or 8x) and face completion simultaneously. Cross-database testing also revealed that the proposed approach has good generalizability.
182 - Yu Su , Honglei Liu , Semih Yavuz 2017
We study the problem of textual relation embedding with distant supervision. To combat the wrong labeling problem of distant supervision, we propose to embed textual relations with global statistics of relations, i.e., the co-occurrence statistics of textual and knowledge base relations collected from the entire corpus. This approach turns out to be more robust to the training noise introduced by distant supervision. On a popular relation extraction dataset, we show that the learned textual relation embedding can be used to augment existing relation extraction models and significantly improve their performance. Most remarkably, for the top 1,000 relational facts discovered by the best existing model, the precision can be improved from 83.9% to 89.3%.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا