We theoretically predict the formation of two-photon bound states in a two-dimensional waveguide network hosting a lattice of two-level atoms. The properties of these bound pairs and the exclusive domains of the parameter space where they emerge due to the interplay between the on-site photon blockade and peculiar shape of polariton dispersion resulting from the long-range radiative couplings between the qubits are investigated in detail. In addition, we analyze the effect of the finite system size on localization characteristics of these excitations.