ترغب بنشر مسار تعليمي؟ اضغط هنا

Performance Analysis of Dual-Hop THz Transmission Systems over $alpha$-$mu$ Fading Channels with Pointing Errors

73   0   0.0 ( 0 )
 نشر من قبل Sai Li
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, the performance of a dual-hop relaying terahertz (THz) wireless communication system is investigated. In particular, the behaviors of the two THz hops are determined by three factors, which are the deterministic path loss, the fading effects, and pointing errors. Assuming that both THz links are subject to the $alpha$-$mu$ fading with pointing errors, we derive exact expressions for the cumulative distribution function (CDF) and probability density function (PDF) of the end-to-end signal-to-noise ratio (SNR). Relying on the CDF and PDF, important performance metrics are evaluated, such as the outage probability, average bit error rate, and average channel capacity. Moreover, the asymptotic analyses are presented to obtain more insights. Results show that the dual-hop relaying scheme has better performance than the single THz link. The systems diversity order is $minleft{frac{phi_1}{2},frac{alpha_1mu_1}{2},phi_2,alpha_2mu_2right}$, where $alpha_i$ and $mu_i$ represent the fading parameters of the $i$-th THz link for $iin(1,2)$, and $phi_i$ denotes the pointing error parameter. In addition, we extend the analysis to a multi-relay cooperative system and derive the asymptotic symbol error rate expressions. Results demonstrate that the diversity order of the multi-relay system is $Kminleft{frac{phi_1}{2},frac{alpha_1mu_1}{2},phi_2,alpha_2mu_2right}$, where $K$ is the number of relays. Finally, the derived analytical expressions are verified by Monte Carlo simulation.



قيم البحث

اقرأ أيضاً

In this paper, we investigate the performance of a reconfigurable intelligent surface (RIS)-assisted dual-hop mixed radio-frequency underwater wireless optical communication (RF-UWOC) system. An RIS is an emerging and low-cost technology that aims to enhance the strength of the received signal, thus improving the system performance. In the considered system setup, a ground source does not have a reliable direct link to a given marine buoy and communicates with it through an RIS installed on a building. In particular, the buoy acts as a relay that sends the signal to an underwater destination. In this context, analytical expressions for the outage probability (OP), average bit error rate (ABER), and average channel capacity (ACC) are derived assuming fixed-gain amplify-and-forward (AF) and decode-and-forward (DF) relaying protocols at the marine buoy. Moreover, asymptotic analyses of the OP and ABER are carried out in order to gain further insights from the analytical frameworks. In particular, the system diversity order is derived and it is shown to depend on the RF link parameters and on the detection schemes of the UWOC link. Finally, it is demonstrated that RIS-assisted systems can effectively improve the performance of mixed dual-hop RF-UWOC systems.
413 - Sai Li , Liang Yang , 2020
In this paper, we investigate the performance of a mixed radio-frequency-underwater wireless optical communication (RF-UWOC) system where an unmanned aerial vehicle (UAV), as a low-altitude mobile aerial base station, transmits information to an auto nomous underwater vehicle (AUV) through a fixed-gain amplify-and-forward (AF) or decode-and-forward (DF) relay. Our analysis accounts for the main factors that affect the system performance, such as the UAV height, air bubbles, temperature gradient, water salinity variations, and detection techniques. Employing fixed-gain AF relaying and DF relaying, we derive closed-form expressions for some key performance metrics, e.g., outage probability (OP), average bit error rate (ABER), and average channel capacity (ACC). In addition, in order to get further insights, asymptotic analyses for the OP and ABER are also carried out. Furthermore, assuming DF relaying, we derive analytical expressions for the optimal UAV altitude that minimizes the OP. Simulation results show that the UAV altitude influences the system performance and there is an optimal altitude which ensures a minimum OP. Moreover, based on the asymptotic results, it is demonstrated that the diversity order of fixed-gain AF relaying and DF relaying are respectively determined by the RF link and by the detection techniques of the UWOC link.
Non-orthogonal multiple access (NOMA) is a potential candidate to further enhance the spectrum utilization efficiency in beyond fifth-generation (B5G) standards. However, there has been little attention on the quantification of the delay-limited perf ormance of downlink NOMA systems. In this paper, we analyze the performance of a two-user downlink NOMA system over generalized {alpha}-{mu} fading in terms of delay violation probability (DVP) and effective rate (ER). In particular, we derive an analytical expression for an upper bound on the DVP and we derive the exact sum ER of the downlink NOMA system. We also derive analytical expressions for high and low signal-to-noise ratio (SNR) approximations to the sum ER, as well as a fundamental upper bound on the sum ER which represents the ergodic sum-rate for the downlink NOMA system. We also analyze the sum ER of a corresponding time-division-multiplexed orthogonal multiple access (OMA) system. Our results show that while NOMA consistently outperforms OMA over the practical SNR range, the relative gain becomes smaller in more severe fading conditions, and is also smaller in the presence a more strict delay quality-of-service (QoS) constraint.
In this work, we present a unified framework for the performance analysis of dual-hop underwater wireless optical communication (UWOC) systems with amplify-and-forward fixed gain relays in the presence of air bubbles and temperature gradients. Operat ing under either heterodyne detection or intensity modulation with direct detection, the UWOC is modeled by the unified mixture Exponential-Generalized Gamma distribution that we have proposed based on an experiment conducted in an indoor laboratory setup and has been shown to provide an excellent fit with the measured data under the considered lab channel scenarios. More specifically, we derive the cumulative distribution function (CDF) and the probability density function of the end-to-end signal-to-noise ratio (SNR) in exact closed-form in terms of the bivariate Foxs H function. Based on this CDF expression, we present novel results for the fundamental performance metrics such as the outage probability, the average bit-error rate (BER) for various modulation schemes, and the ergodic capacity. Additionally, very tight asymptotic results for the outage probability and the average BER at high SNR are obtained in terms of simple functions. Furthermore, we demonstrate that the dual-hop UWOC system can effectively mitigate the short range and both temperature gradients and air bubbles induced turbulences, as compared to the single UWOC link. All the results are verified via computer-based Monte-Carlo simulations.
In this paper, we consider a networked control system (NCS) in which an dynamic plant system is connected to a controller via a temporally correlated wireless fading channel. We focus on communication power design at the sensor to minimize a weighted average state estimation error at the remote controller subject to an average transmit power constraint of the sensor. The power control optimization problem is formulated as an infinite horizon average cost Markov decision process (MDP). We propose a novel continuous-time perturbation approach and derive an asymptotically optimal closed-form value function for the MDP. Under this approximation, we propose a low complexity dynamic power control solution which has an event- driven control structure. We also establish technical conditions for asymptotic optimality, and sufficient conditions for NCS stability under the proposed scheme.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا