ﻻ يوجد ملخص باللغة العربية
Autonomous game design, generating games algorithmically, has been a longtime goal within the technical games research field. However, existing autonomous game design systems have relied in large part on human-authoring for game design knowledge, such as fitness functions in search-based methods. In this paper, we describe an experiment to attempt to learn a human-like fitness function for autonomous game design in an adversarial manner. While our experimental work did not meet our expectations, we present an analysis of our system and results that we hope will be informative to future autonomous game design research.
Despite achieving impressive performance, state-of-the-art classifiers remain highly vulnerable to small, imperceptible, adversarial perturbations. This vulnerability has proven empirically to be very intricate to address. In this paper, we study the
We propose two training techniques for improving the robustness of Neural Networks to adversarial attacks, i.e. manipulations of the inputs that are maliciously crafted to fool networks into incorrect predictions. Both methods are independent of the
As Artificial Intelligence (AI) is used in more applications, the need to consider and mitigate biases from the learned models has followed. Most works in developing fair learning algorithms focus on the offline setting. However, in many real-world a
Multiple organ failure (MOF) is a severe syndrome with a high mortality rate among Intensive Care Unit (ICU) patients. Early and precise detection is critical for clinicians to make timely decisions. An essential challenge in applying machine learnin
We propose the orthogonal random forest, an algorithm that combines Neyman-orthogonality to reduce sensitivity with respect to estimation error of nuisance parameters with generalized random forests (Athey et al., 2017)--a flexible non-parametric met