ترغب بنشر مسار تعليمي؟ اضغط هنا

Adversarial Random Forest Classifier for Automated Game Design

91   0   0.0 ( 0 )
 نشر من قبل Matthew Guzdial
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Autonomous game design, generating games algorithmically, has been a longtime goal within the technical games research field. However, existing autonomous game design systems have relied in large part on human-authoring for game design knowledge, such as fitness functions in search-based methods. In this paper, we describe an experiment to attempt to learn a human-like fitness function for autonomous game design in an adversarial manner. While our experimental work did not meet our expectations, we present an analysis of our system and results that we hope will be informative to future autonomous game design research.



قيم البحث

اقرأ أيضاً

Despite achieving impressive performance, state-of-the-art classifiers remain highly vulnerable to small, imperceptible, adversarial perturbations. This vulnerability has proven empirically to be very intricate to address. In this paper, we study the phenomenon of adversarial perturbations under the assumption that the data is generated with a smooth generative model. We derive fundamental upper bounds on the robustness to perturbations of any classification function, and prove the existence of adversarial perturbations that transfer well across different classifiers with small risk. Our analysis of the robustness also provides insights onto key properties of generative models, such as their smoothness and dimensionality of latent space. We conclude with numerical experimental results showing that our bounds provide informative baselines to the maximal achievable robustness on several datasets.
We propose two training techniques for improving the robustness of Neural Networks to adversarial attacks, i.e. manipulations of the inputs that are maliciously crafted to fool networks into incorrect predictions. Both methods are independent of the chosen attack and leverage random projections of the original inputs, with the purpose of exploiting both dimensionality reduction and some characteristic geometrical properties of adversarial perturbations. The first technique is called RP-Ensemble and consists of an ensemble of networks trained on multiple project
As Artificial Intelligence (AI) is used in more applications, the need to consider and mitigate biases from the learned models has followed. Most works in developing fair learning algorithms focus on the offline setting. However, in many real-world a pplications data comes in an online fashion and needs to be processed on the fly. Moreover, in practical application, there is a trade-off between accuracy and fairness that needs to be accounted for, but current methods often have multiple hyperparameters with non-trivial interaction to achieve fairness. In this paper, we propose a flexible ensemble algorithm for fair decision-making in the more challenging context of evolving online settings. This algorithm, called FARF (Fair and Adaptive Random Forests), is based on using online component classifiers and updating them according to the current distribution, that also accounts for fairness and a single hyperparameters that alters fairness-accuracy balance. Experiments on real-world discriminated data streams demonstrate the utility of FARF.
Multiple organ failure (MOF) is a severe syndrome with a high mortality rate among Intensive Care Unit (ICU) patients. Early and precise detection is critical for clinicians to make timely decisions. An essential challenge in applying machine learnin g models to electronic health records (EHRs) is the pervasiveness of missing values. Most existing imputation methods are involved in the data preprocessing phase, failing to capture the relationship between data and outcome for downstream predictions. In this paper, we propose classifier-guided generative adversarial imputation networks Classifier-GAIN) for MOF prediction to bridge this gap, by incorporating both observed data and label information. Specifically, the classifier takes imputed values from the generator(imputer) to predict task outcomes and provides additional supervision signals to the generator by joint training. The classifier-guide generator imputes missing values with label-awareness during training, improving the classifiers performance during inference. We conduct extensive experiments showing that our approach consistently outperforms classical and state-of-art neural baselines across a range of missing data scenarios and evaluation metrics.
We propose the orthogonal random forest, an algorithm that combines Neyman-orthogonality to reduce sensitivity with respect to estimation error of nuisance parameters with generalized random forests (Athey et al., 2017)--a flexible non-parametric met hod for statistical estimation of conditional moment models using random forests. We provide a consistency rate and establish asymptotic normality for our estimator. We show that under mild assumptions on the consistency rate of the nuisance estimator, we can achieve the same error rate as an oracle with a priori knowledge of these nuisance parameters. We show that when the nuisance functions have a locally sparse parametrization, then a local $ell_1$-penalized regression achieves the required rate. We apply our method to estimate heterogeneous treatment effects from observational data with discrete treatments or continuous treatments, and we show that, unlike prior work, our method provably allows to control for a high-dimensional set of variables under standard sparsity conditions. We also provide a comprehensive empirical evaluation of our algorithm on both synthetic and real data.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا