ترغب بنشر مسار تعليمي؟ اضغط هنا

Preliminary Steps Towards Federated Sentiment Classification

99   0   0.0 ( 0 )
 نشر من قبل Xin-Chun Li
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Automatically mining sentiment tendency contained in natural language is a fundamental research to some artificial intelligent applications, where solutions alternate with challenges. Transfer learning and multi-task learning techniques have been leveraged to mitigate the supervision sparsity and collaborate multiple heterogeneous domains correspondingly. Recent years, the sensitive nature of users private data raises another challenge for sentiment classification, i.e., data privacy protection. In this paper, we resort to federated learning for multiple domain sentiment classification under the constraint that the corpora must be stored on decentralized devices. In view of the heterogeneous semantics across multiple parties and the peculiarities of word embedding, we pertinently provide corresponding solutions. First, we propose a Knowledge Transfer Enhanced Private-Shared (KTEPS) framework for better model aggregation and personalization in federated sentiment classification. Second, we propose KTEPS$^star$ with the consideration of the rich semantic and huge embedding size properties of word vectors, utilizing Projection-based Dimension Reduction (PDR) methods for privacy protection and efficient transmission simultaneously. We propose two federated sentiment classification scenes based on public benchmarks, and verify the superiorities of our proposed methods with abundant experimental investigations.



قيم البحث

اقرأ أيضاً

Extensive research on target-dependent sentiment classification (TSC) has led to strong classification performances in domains where authors tend to explicitly express sentiment about specific entities or topics, such as in reviews or on social media . We investigate TSC in news articles, a much less researched domain, despite the importance of news as an essential information source in individual and societal decision making. This article introduces NewsTSC, a manually annotated dataset to explore TSC on news articles. Investigating characteristics of sentiment in news and contrasting them to popular TSC domains, we find that sentiment in the news is expressed less explicitly, is more dependent on context and readership, and requires a greater degree of interpretation. In an extensive evaluation, we find that the state of the art in TSC performs worse on news articles than on other domains (average recall AvgRec = 69.8 on NewsTSC compared to AvgRev = [75.6, 82.2] on established TSC datasets). Reasons include incorrectly resolved relation of target and sentiment-bearing phrases and off-context dependence. As a major improvement over previous news TSC, we find that BERTs natural language understanding capabilities capture the less explicit sentiment used in news articles.
83 - Fang Ma , Chen Zhang , Dawei Song 2021
Aspect sentiment classification (ASC) aims at determining sentiments expressed towards different aspects in a sentence. While state-of-the-art ASC models have achieved remarkable performance, they are recently shown to suffer from the issue of robust ness. Particularly in two common scenarios: when domains of test and training data are different (out-of-domain scenario) or test data is adversarially perturbed (adversarial scenario), ASC models may attend to irrelevant words and neglect opinion expressions that truly describe diverse aspects. To tackle the challenge, in this paper, we hypothesize that position bias (i.e., the words closer to a concerning aspect would carry a higher degree of importance) is crucial for building more robust ASC models by reducing the probability of mis-attending. Accordingly, we propose two mechanisms for capturing position bias, namely position-biased weight and position-biased dropout, which can be flexibly injected into existing models to enhance representations for classification. Experiments conducted on out-of-domain and adversarial datasets demonstrate that our proposed approaches largely improve the robustness and effectiveness of current models.
Documents are composed of smaller pieces - paragraphs, sentences, and tokens - that have complex relationships between one another. Sentiment classification models that take into account the structure inherent in these documents have a theoretical ad vantage over those that do not. At the same time, transfer learning models based on language model pretraining have shown promise for document classification. However, these two paradigms have not been systematically compared and it is not clear under which circumstances one approach is better than the other. In this work we empirically compare hierarchical models and transfer learning for document-level sentiment classification. We show that non-trivial hierarchical models outperform previous baselines and transfer learning on document-level sentiment classification in five languages.
109 - Zeyu Li , Yilong Qin , Zihan Liu 2021
We study Comparative Preference Classification (CPC) which aims at predicting whether a preference comparison exists between two entities in a given sentence and, if so, which entity is preferred over the other. High-quality CPC models can significan tly benefit applications such as comparative question answering and review-based recommendations. Among the existing approaches, non-deep learning methods suffer from inferior performances. The state-of-the-art graph neural network-based ED-GAT (Ma et al., 2020) only considers syntactic information while ignoring the critical semantic relations and the sentiments to the compared entities. We proposed sentiment Analysis Enhanced COmparative Network (SAECON) which improves CPC ac-curacy with a sentiment analyzer that learns sentiments to individual entities via domain adaptive knowledge transfer. Experiments on the CompSent-19 (Panchenko et al., 2019) dataset present a significant improvement on the F1 scores over the best existing CPC approaches.
Neural methods for SA have led to quantitative improvements over previous approaches, but these advances are not always accompanied with a thorough analysis of the qualitative differences. Therefore, it is not clear what outstanding conceptual challe nges for sentiment analysis remain. In this work, we attempt to discover what challenges still prove a problem for sentiment classifiers for English and to provide a challenging dataset. We collect the subset of sentences that an (oracle) ensemble of state-of-the-art sentiment classifiers misclassify and then annotate them for 18 linguistic and paralinguistic phenomena, such as negation, sarcasm, modality, etc. The dataset is available at https://github.com/ltgoslo/assessing_and_probing_sentiment. Finally, we provide a case study that demonstrates the usefulness of the dataset to probe the performance of a given sentiment classifier with respect to linguistic phenomena.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا