ﻻ يوجد ملخص باللغة العربية
We study the image formation near point singularities (swallowtail and umbilics) in the simulated strongly lensed images of Hubble Ultra Deep Field (HUDF) by the Hubble Frontier Fields (HFF) clusters. In this work, we only consider nearly half of the brightest (a total of 5271) sources in the HUDF region. For every HFF cluster, we constructed 11 realizations of strongly lensed HUDF with an arbitrary translation of the cluster centre within the central region of HUDF and an arbitrary rotation. In each of these realizations, we visually identify the characteristic/exotic image formation corresponding to the different point singularities. We find that our current results are consistent with our earlier results based on different approaches. We also study time delay in these exotic image formations and compare it with typical five-image geometries. We find that the typical time delay in exotic image formations is an order of magnitude smaller than the typical time delay in a generic five-image geometry.
Due to the finite amount of observational data, the best-fit parameters corresponding to the reconstructed cluster mass have uncertainties. In turn, these uncertainties affect the inferences made from these mass models. Following our earlier work, we
Discovery of strongly-lensed gravitational wave (GW) sources will unveil binary compact objects at higher redshifts and lower intrinsic luminosities than is possible without lensing. Such systems will yield unprecedented constraints on the mass distr
This paper reviews a phenomenological approach to the gravitational lensing by exotic objects such as the Ellis wormhole lens, where exotic lens objects may follow a non-standard form of the equation of state or may obey a modified gravity theory. A
Recently, some divergent conclusions about cosmic acceleration were obtained using type Ia supernovae (SNe Ia), with opposite assumptions on the intrinsic luminosity evolution. In this paper, we use strong gravitational lensing systems to probe the c
When light from a distant source object, like a galaxy or a supernova, travels towards us, it is deflected by massive objects that lie on its path. When the mass density of the deflecting object exceeds a certain threshold, multiple, highly distorted