ﻻ يوجد ملخص باللغة العربية
We present two algorithms designed to learn a pattern of correspondence between two data sets in situations where it is desirable to match elements that exhibit an affine relationship. In the motivating case study, the challenge is to better understand micro-RNA (miRNA) regulation in the striatum of Huntingtons disease (HD) model mice. The two data sets contain miRNA and messenger-RNA (mRNA) data, respectively, each data point consisting in a multi-dimensional profile. The biological hypothesis is that if a miRNA induces the degradation of a target mRNA or blocks its translation into proteins, or both, then the profile of the former should be similar to minus the profile of the latter (a particular form of affine relationship). The algorithms unfold in two stages. During the first stage, an optimal transport plan P and an optimal affine transformation are learned, using the Sinkhorn-Knopp algorithm and a mini-batch gradient descent. During the second stage, P is exploited to derive either several co-clusters or several sets of matched elements. A simulation study illustrates how the algorithms work and perform. A brief summary of the real data application in the motivating case-study further illustrates the applicability and interest of the algorithms.
Combining different modalities of data from human tissues has been critical in advancing biomedical research and personalised medical care. In this study, we leverage a graph embedding model (i.e VGAE) to perform link prediction on tissue-specific Ge
Motivation: Omics data, such as transcriptomics or phosphoproteomics, are broadly used to get a snap-shot of the molecular status of cells. In particular, changes in omics can be used to estimate the activity of pathways, transcription factors and ki
Genomics, especially multi-omics, has made precision medicine feasible. The completion and publicly accessible multi-omics resource with clinical outcome, such as The Cancer Genome Atlas (TCGA) is a great test bed for developing computational methods
Linear discrimination, from the point of view of numerical linear algebra, can be treated as solving an ill-posed system of linear equations. In order to generate a solution that is robust in the presence of noise, these problems require regularizati
Stratifying cancer patients based on their gene expression levels allows improving diagnosis, survival analysis and treatment planning. However, such data is extremely highly dimensional as it contains expression values for over 20000 genes per patie