ﻻ يوجد ملخص باللغة العربية
IceCube is a cubic-kilometer scale neutrino telescope located at the geographic South Pole. The detector utilizes the extremely transparent Antarctic ice as a medium for detecting Cherenkov radiation from neutrino interactions. While the optical properties of the glacial ice are generally well modeled and understood, the uncertainties which remain are still the dominant source of systematic uncertainties for many IceCube analyses. A camera and LED system is being built for the IceCube Upgrade that will enable the observation of optical properties throughout the Upgrade array. The SPICEcore hole, a 1.7 km deep ice-core hole located near the IceCube detector, has given the opportunity to test the performance of the camera system ahead of the Upgrade construction. In this contribution, we present the results of the camera and LED system deployment during the 2019/2020 austral summer season as part of a SPICEcore luminescence logger system.
The IceCube Neutrino Observatory at the geographic South Pole instruments a gigaton of glacial Antarctic ice with over 5000 photosensors. The detector, by now running for over a decade, will be upgraded with seven new densely instrumented strings. Th
The IceCube Neutrino Observatory at the geographic South Pole has reached a number of milestones in the field of neutrino astrophysics. The achievements of IceCube include the discovery of a high-energy astrophysical neutrino flux, and the temporal a
The Wavelength-shifting Optical Module (WOM) is a novel optical sensor that uses wavelength shifting and light guiding to substantially enhance the photosensitive area of UV optical modules. It has been designed for the IceCube Upgrade, a seven-strin
Following the detection of high-energy astrophysical neutrinos in 2013, their origin is still unknown. Aiming for the identification of an electromagnetic counterpart of a rapidly fading source, we have implemented a realtime analysis framework for t
The IceCube Neutrino Observatory opened the window on neutrino astronomy by discovering high-energy astrophysical neutrinos in 2013 and identifying the first compelling astrophysical neutrino source, the blazar TXS0506+056, in 2017. In this talk, we