ترغب بنشر مسار تعليمي؟ اضغط هنا

Target-Oriented Fine-tuning for Zero-Resource Named Entity Recognition

111   0   0.0 ( 0 )
 نشر من قبل Ying Zhang
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Zero-resource named entity recognition (NER) severely suffers from data scarcity in a specific domain or language. Most studies on zero-resource NER transfer knowledge from various data by fine-tuning on different auxiliary tasks. However, how to properly select training data and fine-tuning tasks is still an open problem. In this paper, we tackle the problem by transferring knowledge from three aspects, i.e., domain, language and task, and strengthening connections among them. Specifically, we propose four practical guidelines to guide knowledge transfer and task fine-tuning. Based on these guidelines, we design a target-oriented fine-tuning (TOF) framework to exploit various data from three aspects in a unified training manner. Experimental results on six benchmarks show that our method yields consistent improvements over baselines in both cross-domain and cross-lingual scenarios. Particularly, we achieve new state-of-the-art performance on five benchmarks.



قيم البحث

اقرأ أيضاً

Existing models for cross-domain named entity recognition (NER) rely on numerous unlabeled corpus or labeled NER training data in target domains. However, collecting data for low-resource target domains is not only expensive but also time-consuming. Hence, we propose a cross-domain NER model that does not use any external resources. We first introduce a Multi-Task Learning (MTL) by adding a new objective function to detect whether tokens are named entities or not. We then introduce a framework called Mixture of Entity Experts (MoEE) to improve the robustness for zero-resource domain adaptation. Finally, experimental results show that our model outperforms strong unsupervised cross-domain sequence labeling models, and the performance of our model is close to that of the state-of-the-art model which leverages extensive resources.
Distant supervision allows obtaining labeled training corpora for low-resource settings where only limited hand-annotated data exists. However, to be used effectively, the distant supervision must be easy to gather. In this work, we present ANEA, a t ool to automatically annotate named entities in texts based on entity lists. It spans the whole pipeline from obtaining the lists to analyzing the errors of the distant supervision. A tuning step allows the user to improve the automatic annotation with their linguistic insights without labelling or checking all tokens manually. In six low-resource scenarios, we show that the F1-score can be increased by on average 18 points through distantly supervised data obtained by ANEA.
In recent years, great success has been achieved in the field of natural language processing (NLP), thanks in part to the considerable amount of annotated resources. For named entity recognition (NER), most languages do not have such an abundance of labeled data as English, so the performances of those languages are relatively lower. To improve the performance, we propose a general approach called Back Attention Network (BAN). BAN uses a translation system to translate other language sentences into English and then applies a new mechanism named back attention knowledge transfer to obtain task-specific information from pre-trained high-resource languages NER model. This strategy can transfer high-layer features of well-trained model and enrich the semantic representations of the original language. Experiments on three different language datasets indicate that the proposed approach outperforms other state-of-the-art methods.
Public security vulnerability reports (e.g., CVE reports) play an important role in the maintenance of computer and network systems. Security companies and administrators rely on information from these reports to prioritize tasks on developing and de ploying patches to their customers. Since these reports are unstructured texts, automatic information extraction (IE) can help scale up the processing by converting the unstructured reports to structured forms, e.g., software names a
Named entity typing (NET) is a classification task of assigning an entity mention in the context with given semantic types. However, with the growing size and granularity of the entity types, rare researches in previous concern with newly emerged ent ity types. In this paper, we propose MZET, a novel memory augmented FNET (Fine-grained NET) model, to tackle the unseen types in a zero-shot manner. MZET incorporates character-level, word-level, and contextural-level information to learn the entity mention representation. Besides, MZET considers the semantic meaning and the hierarchical structure into the entity type representation. Finally, through the memory component which models the relationship between the entity mention and the entity type, MZET transfer the knowledge from seen entity types to the zero-shot ones. Extensive experiments on three public datasets show prominent performance obtained by MZET, which surpasses the state-of-the-art FNET neural network models with up to 7% gain in Micro-F1 and Macro-F1 score.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا