ﻻ يوجد ملخص باللغة العربية
This paper proposes a correspondence-free method for point cloud rotational registration. We learn an embedding for each point cloud in a feature space that preserves the SO(3)-equivariance property, enabled by recent developments in equivariant neural networks. The proposed shape registration method achieves three major advantages through combining equivariant feature learning with implicit shape models. First, the necessity of data association is removed because of the permutation-invariant property in network architectures similar to PointNet. Second, the registration in feature space can be solved in closed-form using Horns method due to the SO(3)-equivariance property. Third, the registration is robust to noise in the point cloud because of implicit shape learning. The experimental results show superior performance compared with existing correspondence-free deep registration methods.
In this paper, we propose a novel local descriptor-based framework, called You Only Hypothesize Once (YOHO), for the registration of two unaligned point clouds. In contrast to most existing local descriptors which rely on a fragile local reference fr
We propose CaSPR, a method to learn object-centric Canonical Spatiotemporal Point Cloud Representations of dynamically moving or evolving objects. Our goal is to enable information aggregation over time and the interrogation of object state at any sp
Implicit neural representation is a recent approach to learn shape collections as zero level-sets of neural networks, where each shape is represented by a latent code. So far, the focus has been shape reconstruction, while shape generalization was mo
Processing point cloud data is an important component of many real-world systems. As such, a wide variety of point-based approaches have been proposed, reporting steady benchmark improvements over time. We study the key ingredients of this progress a
Features that are equivariant to a larger group of symmetries have been shown to be more discriminative and powerful in recent studies. However, higher-order equivariant features often come with an exponentially-growing computational cost. Furthermor