ﻻ يوجد ملخص باللغة العربية
Cubic Galileon massive gravity is a development of de Rham-Gabadadze-Tolly (dRGT) massive gravity theory is which the space of the Stueckelberg field is broken. We consider the cubic Galileon term as a scalar field coupled to the graviton filed. We present a detailed study of the cosmological aspects of this theory of gravity. We analyze self-accelerating solutions of the background equations of motion to explain the accelerated expansion of the Universe. Exploiting the latest Union2 Type Ia Supernovea (SNIa) dataset, which consists of 557 SNIa, we show that cubic Galileon massive gravity theory is consistent with the observations. We also examine the tensor perturbations within the framework of this model and find an expression for the dispersion relation of gravitational waves, and show that it is consistent with the observational results.
Recently a cubic Galileon cosmological model was derived by the assumption that the field equations are invariant under the action of point transformations. The cubic Galileon model admits a second conservation law which means that the field equation
In this paper we generalize the dynamical systems analysis of the cubic galileon model previously investigated in cite{rtgui} by including self-interaction potentials beyond the exponential one. It will be shown that, consistently with the results of
In this paper we investigate the cosmological dynamics of an up to cubic curvature correction to General Relativity (GR) known as Cosmological Einsteinian Cubic Gravity (CECG), whose vacuum spectrum consists of the graviton exclusively and its cosmol
In Eddington gravity, the action principle involves only the symmetric parts of the connection and the Ricci tensor, with a metric that emerges proportionally to the latter. Here, we relax this symmetric character, prolong the action with the antisym
The Palatini gravitational action is enlarged by an arbitrary function $f(X)$ of the determinants of the Ricci tensor and the metric, $X=|textbf{det}.R|/|textbf{det}.g|$. The resulting Ricci-determinant theory exhibits novel deviations from general r