ترغب بنشر مسار تعليمي؟ اضغط هنا

Approximation Theory of Convolutional Architectures for Time Series Modelling

60   0   0.0 ( 0 )
 نشر من قبل Haotian Jiang
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the approximation properties of convolutional architectures applied to time series modelling, which can be formulated mathematically as a functional approximation problem. In the recurrent setting, recent results reveal an intricate connection between approximation efficiency and memory structures in the data generation process. In this paper, we derive parallel results for convolutional architectures, with WaveNet being a prime example. Our results reveal that in this new setting, approximation efficiency is not only characterised by memory, but also additional fine structures in the target relationship. This leads to a novel definition of spectrum-based regularity that measures the complexity of temporal relationships under the convolutional approximation scheme. These analyses provide a foundation to understand the differences between architectural choices for time series modelling and can give theoretically grounded guidance for practical applications.



قيم البحث

اقرأ أيضاً

Time series data analytics has been a problem of substantial interests for decades, and Dynamic Time Warping (DTW) has been the most widely adopted technique to measure dissimilarity between time series. A number of global-alignment kernels have sinc e been proposed in the spirit of DTW to extend its use to kernel-based estimation method such as support vector machine. However, those kernels suffer from diagonal dominance of the Gram matrix and a quadratic complexity w.r.t. the sample size. In this work, we study a family of alignment-aware positive definite (p.d.) kernels, with its feature embedding given by a distribution of emph{Random Warping Series (RWS)}. The proposed kernel does not suffer from the issue of diagonal dominance while naturally enjoys a emph{Random Features} (RF) approximation, which reduces the computational complexity of existing DTW-based techniques from quadratic to linear in terms of both the number and the length of time-series. We also study the convergence of the RF approximation for the domain of time series of unbounded length. Our extensive experiments on 16 benchmark datasets demonstrate that RWS outperforms or matches state-of-the-art classification and clustering methods in both accuracy and computational time. Our code and data is available at { url{https://github.com/IBM/RandomWarpingSeries}}.
152 - Wenjie Hu , Yang Yang , Liang Wu 2019
The modeling of time series is becoming increasingly critical in a wide variety of applications. Overall, data evolves by following different patterns, which are generally caused by different user behaviors. Given a time series, we define the evoluti on gene to capture the latent user behaviors and to describe how the behaviors lead to the generation of time series. In particular, we propose a uniform framework that recognizes different evolution genes of segments by learning a classifier, and adopt an adversarial generator to implement the evolution gene by estimating the segments distribution. Experimental results based on a synthetic dataset and five real-world datasets show that our approach can not only achieve a good prediction results (e.g., averagely +10.56% in terms of F1), but is also able to provide explanations of the results.
The RKHS bandit problem (also called kernelized multi-armed bandit problem) is an online optimization problem of non-linear functions with noisy feedback. Although the problem has been extensively studied, there are unsatisfactory results for some pr oblems compared to the well-studied linear bandit case. Specifically, there is no general algorithm for the adversarial RKHS bandit problem. In addition, high computational complexity of existing algorithms hinders practical application. We address these issues by considering a novel amalgamation of approximation theory and the misspecified linear bandit problem. Using an approximation method, we propose efficient algorithms for the stochastic RKHS bandit problem and the first general algorithm for the adversarial RKHS bandit problem. Furthermore, we empirically show that one of our proposed methods has comparable cumulative regret to IGP-UCB and its running time is much shorter.
124 - He Sun , Zhun Deng , Hui Chen 2020
We introduce the decision-aware time-series conditional generative adversarial network (DAT-CGAN) as a method for time-series generation. The framework adopts a multi-Wasserstein loss on structured decision-related quantities, capturing the heterogen eity of decision-related data and providing new effectiveness in supporting the decision processes of end users. We improve sample efficiency through an overlapped block-sampling method, and provide a theoretical characterization of the generalization properties of DAT-CGAN. The framework is demonstrated on financial time series for a multi-time-step portfolio choice problem. We demonstrate better generative quality in regard to underlying data and different decision-related quantities than strong, GAN-based baselines.
133 - Hao Peng , Pei Chen , Rui Liu 2021
Making predictions in a robust way is not easy for nonlinear systems. In this work, a neural network computing framework, i.e., a spatiotemporal convolutional network (STCN), was developed to efficiently and accurately render a multistep-ahead predic tion of a time series by employing a spatial-temporal information (STI) transformation. The STCN combines the advantages of both the temporal convolutional network (TCN) and the STI equation, which maps the high-dimensional/spatial data to the future temporal values of a target variable, thus naturally providing the prediction of the target variable. From the observed variables, the STCN also infers the causal factors of the target variable in the sense of Granger causality, which are in turn selected as effective spatial information to improve the prediction robustness. The STCN was successfully applied to both benchmark systems and real-world datasets, all of which show superior and robust performance in multistep-ahead prediction, even when the data were perturbed by noise. From both theoretical and computational viewpoints, the STCN has great potential in practical applications in artificial intelligence (AI) or machine learning fields as a model-free method based only on the observed data, and also opens a new way to explore the observed high-dimensional data in a dynamical manner for machine learning.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا