ترغب بنشر مسار تعليمي؟ اضغط هنا

Mediated Uncoupled Learning: Learning Functions without Direct Input-output Correspondences

111   0   0.0 ( 0 )
 نشر من قبل Ikko Yamane
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

Ordinary supervised learning is useful when we have paired training data of input $X$ and output $Y$. However, such paired data can be difficult to collect in practice. In this paper, we consider the task of predicting $Y$ from $X$ when we have no paired data of them, but we have two separate, independent datasets of $X$ and $Y$ each observed with some mediating variable $U$, that is, we have two datasets $S_X = {(X_i, U_i)}$ and $S_Y = {(U_j, Y_j)}$. A naive approach is to predict $U$ from $X$ using $S_X$ and then $Y$ from $U$ using $S_Y$, but we show that this is not statistically consistent. Moreover, predicting $U$ can be more difficult than predicting $Y$ in practice, e.g., when $U$ has higher dimensionality. To circumvent the difficulty, we propose a new method that avoids predicting $U$ but directly learns $Y = f(X)$ by training $f(X)$ with $S_{X}$ to predict $h(U)$ which is trained with $S_{Y}$ to approximate $Y$. We prove statistical consistency and error bounds of our method and experimentally confirm its practical usefulness.



قيم البحث

اقرأ أيضاً

In this paper, we develop a theory of learning nonlinear input-output maps with fading memory by dissipative quantum systems, as a quantum counterpart of the theory of approximating such maps using classical dynamical systems. The theory identifies t he properties required for a class of dissipative quantum systems to be {em universal}, in that any input-output map with fading memory can be approximated arbitrarily closely by an element of this class. We then introduce an example class of dissipative quantum systems that is provably universal. Numerical experiments illustrate that with a small number of qubits, this class can achieve comparable performance to classical learning schemes with a large number of tunable parameters. Further numerical analysis suggests that the exponentially increasing Hilbert space presents a potential resource for dissipative quantum systems to surpass classical learning schemes for input-output maps.
This is a brief technical note to clarify some of the issues with applying the application of the algorithm posterior sampling for reinforcement learning (PSRL) in environments without fixed episodes. In particular, this paper aims to: - Review som e of results which have been proven for finite horizon MDPs (Osband et al 2013, 2014a, 2014b, 2016) and also for MDPs with finite ergodic structure (Gopalan et al 2014). - Review similar results for optimistic algorithms in infinite horizon problems (Jaksch et al 2010, Bartlett and Tewari 2009, Abbasi-Yadkori and Szepesvari 2011), with particular attention to the dynamic episode growth. - Highlight the delicate technical issue which has led to a fault in the proof of the lazy-PSRL algorithm (Abbasi-Yadkori and Szepesvari 2015). We present an explicit counterexample to this style of argument. Therefore, we suggest that the Theorem 2 in (Abbasi-Yadkori and Szepesvari 2015) be instead considered a conjecture, as it has no rigorous proof. - Present pragmatic approaches to apply PSRL in infinite horizon problems. We conjecture that, under some additional assumptions, it will be possible to obtain bounds $O( sqrt{T} )$ even without episodic reset. We hope that this note serves to clarify existing results in the field of reinforcement learning and provides interesting motivation for future work.
Structured-output learning is a challenging problem; particularly so because of the difficulty in obtaining large datasets of fully labelled instances for training. In this paper we try to overcome this difficulty by presenting a multi-utility learni ng framework for structured prediction that can learn from training instances with different forms of supervision. We propose a unified technique for inferring the loss functions most suitable for quantifying the consistency of solutions with the given weak annotation. We demonstrate the effectiveness of our framework on the challenging semantic image segmentation problem for which a wide variety of annotations can be used. For instance, the popular training datasets for semantic segmentation are composed of images with hard-to-generate full pixel labellings, as well as images with easy-to-obtain weak annotations, such as bounding boxes around objects, or image-level labels that specify which object categories are present in an image. Experimental evaluation shows that the use of annotation-specific loss functions dramatically improves segmentation accuracy compared to the baseline system where only one type of weak annotation is used.
When fitting Bayesian machine learning models on scarce data, the main challenge is to obtain suitable prior knowledge and encode it into the model. Recent advances in meta-learning offer powerful methods for extracting such prior knowledge from data acquired in related tasks. When it comes to meta-learning in Gaussian process models, approaches in this setting have mostly focused on learning the kernel function of the prior, but not on learning its mean function. In this work, we explore meta-learning the mean function of a Gaussian process prior. We present analytical and empirical evidence that mean function learning can be useful in the meta-learning setting, discuss the risk of overfitting, and draw connections to other meta-learning approaches, such as model agnostic meta-learning and functional PCA.
We learn recurrent neural network optimizers trained on simple synthetic functions by gradient descent. We show that these learned optimizers exhibit a remarkable degree of transfer in that they can be used to efficiently optimize a broad range of de rivative-free black-box functions, including Gaussian process bandits, simple control objectives, global optimization benchmarks and hyper-parameter tuning tasks. Up to the training horizon, the learned optimizers learn to trade-off exploration and exploitation, and compare favourably with heavily engineered Bayesian optimization packages for hyper-parameter tuning.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا