ترغب بنشر مسار تعليمي؟ اضغط هنا

The Convergence Rates of Blockchain Mining Games: A Markovian Approach

101   0   0.0 ( 0 )
 نشر من قبل Victor Verdugo
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Understanding the strategic behavior of miners in a blockchain is of great importance for its proper operation. A common model for mining games considers an infinite time horizon, with players optimizing asymptotic average objectives. Implicitly, this assumes that the asymptotic behaviors are realized at human-scale times, otherwise invalidating current models. We study the mining game utilizing Markov Decision Processes. Our approach allows us to describe the asymptotic behavior of the game in terms of the stationary distribution of the induced Markov chain. We focus on a model with two players under immediate release, assuming two different objectives: the (asymptotic) average reward per turn and the (asymptotic) percentage of obtained blocks. Using tools from Markov chain analysis, we show the existence of a strategy achieving slow mixing times, exponential in the policy parameters. This result emphasizes the imperative need to understand convergence rates in mining games, validating the standard models. Towards this end, we provide upper bounds for the mixing time of certain meaningful classes of strategies. This result yields criteria for establishing that long-term averaged functions are coherent as payoff functions. Moreover, by studying hitting times, we provide a criterion to validate the common simplification of considering finite states models. For both considered objectives functions, we provide explicit formulae depending on the stationary distribution of the underlying Markov chain. In particular, this shows that both mentioned objectives are not equivalent. Finally, we perform a market share case study in a particular regime of the game. More precisely, we show that an strategic player with a sufficiently large processing power can impose negative revenue on honest players.



قيم البحث

اقرأ أيضاً

We study the strategic implications that arise from adding one extra option to the miners participating in the bitcoin protocol. We propose that when adding a block, miners also have the ability to pay forward an amount to be collected by the first m iner who successfully extends their branch, giving them the power to influence the incentives for mining. We formulate a stochastic game for the study of such incentives and show that with this added option, smaller miners can guarantee that the best response of even substantially more powerful miners is to follow the expected behavior intended by the protocol designer.
We consider the question of whether, and in what sense, Wardrop equilibria provide a good approximation for Nash equilibria in atomic unsplittable congestion games with a large number of small players. We examine two different definitions of small pl ayers. In the first setting, we consider games where each players weight is small. We prove that when the number of players goes to infinity and their weights to zero, the random flows in all (mixed) Nash equilibria for the finite games converge in distribution to the set of Wardrop equilibria of the corresponding nonatomic limit game. In the second setting, we consider an increasing number of players with a unit weight that participate in the game with a decreasingly small probability. In this case, the Nash equilibrium flows converge in total variation towards Poisson random variables whose expected values are Wardrop equilibria of a different nonatomic game with suitably-defined costs. The latter can be viewed as symmetric equilibria in a Poisson game in the sense of Myerson, establishing a plausible connection between the Wardrop model for routing games and the stochastic fluctuations observed in real traffic. In both settings we provide explicit approximation bounds, and we study the convergence of the price of anarchy. Beyond the case of congestion games, we prove a general result on the convergence of large games with random players towards Poisson games.
We consider a game-theoretic model of information retrieval with strategic authors. We examine two different utility schemes: authors who aim at maximizing exposure and authors who want to maximize active selection of their content (i.e. the number o f clicks). We introduce the study of author learning dynamics in such contexts. We prove that under the probability ranking principle (PRP), which forms the basis of the current state of the art ranking methods, any better-response learning dynamics converges to a pure Nash equilibrium. We also show that other ranking methods induce a strategic environment under which such a convergence may not occur.
In this paper, we propose FedChain, a novel framework for federated-blockchain systems, to enable effective transferring of tokens between different blockchain networks. Particularly, we first introduce a federated-blockchain system together with a c ross-chain transfer protocol to facilitate the secure and decentralized transfer of tokens between chains. We then develop a novel PoS-based consensus mechanism for FedChain, which can satisfy strict security requirements, prevent various blockchain-specific attacks, and achieve a more desirable performance compared to those of other existing consensus mechanisms. Moreover, a Stackelberg game model is developed to examine and address the problem of centralization in the FedChain system. Furthermore, the game model can enhance the security and performance of FedChain. By analyzing interactions between the stakeholders and chain operators, we can prove the uniqueness of the Stackelberg equilibrium and find the exact formula for this equilibrium. These results are especially important for the stakeholders to determine their best investment strategies and for the chain operators to design the optimal policy to maximize their benefits and security protection for FedChain. Simulations results then clearly show that the FedChain framework can help stakeholders to maximize their profits and the chain operators to design appropriate parameters to enhance FedChains security and performance.
228 - Liya Xu , Mingzhu Ge , Weili Wu 2020
Mining in the blockchain requires high computing power to solve the hash puzzle for example proof-of-work puzzle. It takes high cost to achieve the calculation of this problem in devices of IOT, especially the mobile devices of IOT. It consequently r estricts the application of blockchain in mobile environment. However, edge computing can be utilized to solve the problem for insufficient computing power of mobile devices in IOT. Edge servers can recruit many mobile devices to contribute computing power together to mining and share the reward of mining with these recruited mobile devices. In this paper, we propose an incentivizing mechanism based on edge computing for mobile blockchain. We design a two-stage Stackelberg Game to jointly optimize the reward of edge servers and recruited mobile devices. The edge server as the leader sets the expected fee for the recruited mobile devices in Stage I. The mobile device as a follower provides its computing power to mine according to the expected fee in Stage. It proves that this game can obtain a uniqueness Nash Equilibrium solution under the same or different expected fee. In the simulation experiment, we obtain a result curve of the profit for the edge server with the different ratio between the computing power from the edge server and mobile devices. In addition, the proposed scheme has been compared with the MDG scheme for the profit of the edge server. The experimental results show that the profit of the proposed scheme is more than that of the MDG scheme under the same total computing power.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا