ﻻ يوجد ملخص باللغة العربية
Understanding the strategic behavior of miners in a blockchain is of great importance for its proper operation. A common model for mining games considers an infinite time horizon, with players optimizing asymptotic average objectives. Implicitly, this assumes that the asymptotic behaviors are realized at human-scale times, otherwise invalidating current models. We study the mining game utilizing Markov Decision Processes. Our approach allows us to describe the asymptotic behavior of the game in terms of the stationary distribution of the induced Markov chain. We focus on a model with two players under immediate release, assuming two different objectives: the (asymptotic) average reward per turn and the (asymptotic) percentage of obtained blocks. Using tools from Markov chain analysis, we show the existence of a strategy achieving slow mixing times, exponential in the policy parameters. This result emphasizes the imperative need to understand convergence rates in mining games, validating the standard models. Towards this end, we provide upper bounds for the mixing time of certain meaningful classes of strategies. This result yields criteria for establishing that long-term averaged functions are coherent as payoff functions. Moreover, by studying hitting times, we provide a criterion to validate the common simplification of considering finite states models. For both considered objectives functions, we provide explicit formulae depending on the stationary distribution of the underlying Markov chain. In particular, this shows that both mentioned objectives are not equivalent. Finally, we perform a market share case study in a particular regime of the game. More precisely, we show that an strategic player with a sufficiently large processing power can impose negative revenue on honest players.
We study the strategic implications that arise from adding one extra option to the miners participating in the bitcoin protocol. We propose that when adding a block, miners also have the ability to pay forward an amount to be collected by the first m
We consider the question of whether, and in what sense, Wardrop equilibria provide a good approximation for Nash equilibria in atomic unsplittable congestion games with a large number of small players. We examine two different definitions of small pl
We consider a game-theoretic model of information retrieval with strategic authors. We examine two different utility schemes: authors who aim at maximizing exposure and authors who want to maximize active selection of their content (i.e. the number o
In this paper, we propose FedChain, a novel framework for federated-blockchain systems, to enable effective transferring of tokens between different blockchain networks. Particularly, we first introduce a federated-blockchain system together with a c
Mining in the blockchain requires high computing power to solve the hash puzzle for example proof-of-work puzzle. It takes high cost to achieve the calculation of this problem in devices of IOT, especially the mobile devices of IOT. It consequently r