ﻻ يوجد ملخص باللغة العربية
We present StyleFusion, a new mapping architecture for StyleGAN, which takes as input a number of latent codes and fuses them into a single style code. Inserting the resulting style code into a pre-trained StyleGAN generator results in a single harmonized image in which each semantic region is controlled by one of the input latent codes. Effectively, StyleFusion yields a disentangled representation of the image, providing fine-grained control over each region of the generated image. Moreover, to help facilitate global control over the generated image, a special input latent code is incorporated into the fused representation. StyleFusion operates in a hierarchical manner, where each level is tasked with learning to disentangle a pair of image regions (e.g., the car body and wheels). The resulting learned disentanglement allows one to modify both local, fine-grained semantics (e.g., facial features) as well as more global features (e.g., pose and background), providing improved flexibility in the synthesis process. As a natural extension, StyleFusion enables one to perform semantically-aware cross-image mixing of regions that are not necessarily aligned. Finally, we demonstrate how StyleFusion can be paired with existing editing techniques to more faithfully constrain the edit to the users region of interest.
The clinical management of several cardiovascular conditions, such as pulmonary hypertension, require the assessment of the right ventricular (RV) function. This work addresses the fully automatic and robust access to one of the key RV biomarkers, it
A deep generative model such as a GAN learns to model a rich set of semantic and physical rules about the target distribution, but up to now, it has been obscure how such rules are encoded in the network, or how a rule could be changed. In this paper
This paper aims to disentangle the latent space in cVAE into the spatial structure and the style code, which are complementary to each other, with one of them $z_s$ being label relevant and the other $z_u$ irrelevant. The generator is built by a conn
We present FlipDial, a generative model for visual dialogue that simultaneously plays the role of both participants in a visually-grounded dialogue. Given context in the form of an image and an associated caption summarising the contents of the image
We address the problem of finding realistic geometric corrections to a foreground object such that it appears natural when composited into a background image. To achieve this, we propose a novel Generative Adversarial Network (GAN) architecture that