ﻻ يوجد ملخص باللغة العربية
We present a complete dynamical study of the intermediate polar and dwarf nova cataclysmic variable GK Per (Nova Persei 1901) based on a multi-site optical spectroscopy and $R$-band photometry campaign. The radial velocity curve of the evolved donor star has a semi-amplitude $K_2=126.4 pm 0.9 , mathrm{km},mathrm{s}^{-1}$ and an orbital period $P=1.996872 pm 0.000009 , mathrm{d}$. We refine the projected rotational velocity of the donor star to $v_mathrm{rot} sin i = 52 pm 2 , mathrm{km},mathrm{s}^{-1}$ which, together with $K_2$, provides a donor star to white dwarf mass ratio $q=M_2/M_1=0.38 pm 0.03$. We also determine the orbital inclination of the system by modelling the phase-folded ellipsoidal light curve and obtain $i=67^{circ} pm 5^{circ}$. The resulting dynamical masses are $M_{1}=1.03^{+0.16}_{-0.11} , mathrm{M}_{odot}$ and $M_2 = 0.39^{+0.07}_{-0.06} , mathrm{M}_{odot}$ at $68$ per cent confidence level. The white dwarf dynamical mass is compared with estimates obtained by modelling the decline light curve of the $1901$ nova event and X-ray spectroscopy. The best matching mass estimates come from the nova light curve models and an X-ray data analysis that uses the ratio between the Alfven radius in quiescence and during dwarf nova outburst.
We present new observations of the nebular remnant of the old nova GK Persei 1901, in the optical using the 2m HCT and at low radio frequencies using the GMRT. The evolution of the nova remnant indicates shock interaction with the ambient medium, esp
We present optical and X-ray time-series photometry of EI UMa that reveal modulation at 746 and 770 s, which we interpret as the white dwarf spin and spin-orbit sidebands. These detections, combined with previous X-ray studies, establish EI UMa as an
We report on X-ray observations of the Dwarf Nova GK Persei performed by {it NuSTAR} in 2015. GK Persei, behaving also as an Intermediate Polar, exhibited a Dwarf Nova outburst in 2015 March--April. The object was observed with {sl NuSTAR} during the
GK Persei (1901, the Firework Nebula) is an old but bright nova remnant that offers a chance to probe the physics and kinematics of nova shells. The kinematics in new and archival longslit optical echelle spectra were analysed using the shape softwar
We study the absorption lines present in the spectra of the long-period cataclysmic variable GK Per during its quiescent state, which are associated with the secondary star. By comparing quiescent data with outburst spectra we infer that the donor st