ترغب بنشر مسار تعليمي؟ اضغط هنا

An Efficient Deep Distribution Network for Bid Shading in First-Price Auctions

81   0   0.0 ( 0 )
 نشر من قبل Tian Zhou
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Since 2019, most ad exchanges and sell-side platforms (SSPs), in the online advertising industry, shifted from second to first price auctions. Due to the fundamental difference between these auctions, demand-side platforms (DSPs) have had to update their bidding strategies to avoid bidding unnecessarily high and hence overpaying. Bid shading was proposed to adjust the bid price intended for second-price auctions, in order to balance cost and winning probability in a first-price auction setup. In this study, we introduce a novel deep distribution network for optimal bidding in both open (non-censored) and closed (censored) online first-price auctions. Offline and online A/B testing results show that our algorithm outperforms previous state-of-art algorithms in terms of both surplus and effective cost per action (eCPX) metrics. Furthermore, the algorithm is optimized in run-time and has been deployed into VerizonMedia DSP as production algorithm, serving hundreds of billions of bid requests per day. Online A/B test shows that advertisers ROI are improved by +2.4%, +2.4%, and +8.6% for impression based (CPM), click based (CPC), and conversion based (CPA) campaigns respectively.



قيم البحث

اقرأ أيضاً

In this paper, we investigate the problem about how to bid in repeated contextual first price auctions. We consider a single bidder (learner) who repeatedly bids in the first price auctions: at each time $t$, the learner observes a context $x_tin mat hbb{R}^d$ and decides the bid based on historical information and $x_t$. We assume a structured linear model of the maximum bid of all the others $m_t = alpha_0cdot x_t + z_t$, where $alpha_0in mathbb{R}^d$ is unknown to the learner and $z_t$ is randomly sampled from a noise distribution $mathcal{F}$ with log-concave density function $f$. We consider both emph{binary feedback} (the learner can only observe whether she wins or not) and emph{full information feedback} (the learner can observe $m_t$) at the end of each time $t$. For binary feedback, when the noise distribution $mathcal{F}$ is known, we propose a bidding algorithm, by using maximum likelihood estimation (MLE) method to achieve at most $widetilde{O}(sqrt{log(d) T})$ regret. Moreover, we generalize this algorithm to the setting with binary feedback and the noise distribution is unknown but belongs to a parametrized family of distributions. For the full information feedback with emph{unknown} noise distribution, we provide an algorithm that achieves regret at most $widetilde{O}(sqrt{dT})$. Our approach combines an estimator for log-concave density functions and then MLE method to learn the noise distribution $mathcal{F}$ and linear weight $alpha_0$ simultaneously. We also provide a lower bound result such that any bidding policy in a broad class must achieve regret at least $Omega(sqrt{T})$, even when the learner receives the full information feedback and $mathcal{F}$ is known.
Our paper concerns the computation of Nash equilibria of first-price auctions with correlated values. While there exist several equilibrium computation methods for auctions with independent values, the correlation of the bidders values introduces sig nificant complications that render existing methods unsatisfactory in practice. Our contribution is a step towards filling this gap: inspired by the seminal fictitious play process of Brown and Robinson, we present a learning heuristic-that we call fictitious bidding (FB)-for estimating Bayes-Nash equilibria of first-price auctions with correlated values, and we assess the performance of this heuristic on several relevant examples.
A common practice in many auctions is to offer bidders an opportunity to improve their bids, known as a Best and Final Offer (BAFO) stage. This final bid can depend on new information provided about either the asset or the competitors. This paper exa mines the effects of new information regarding competitors, seeking to determine what information the auctioneer should provide assuming the set of allowable bids is discrete. The rational strategy profile that maximizes the revenue of the auctioneer is the one where each bidder makes the highest possible bid that is lower than his valuation of the item. This strategy profile is an equilibrium for a large enough number of bidders, regardless of the information released. We compare the number of bidders needed for this profile to be an equilibrium under different information settings. We find that it becomes an equilibrium with fewer bidders when less additional information is made available to the bidders regarding the competition. It follows that when the number of bidders is a priori unknown, there are some advantages to the auctioneer to not reveal information.
Auto-bidding has become one of the main options for bidding in online advertisements, in which advertisers only need to specify high-level objectives and leave the complex task of bidding to auto-bidders. In this paper, we propose a family of auction s with boosts to improve welfare in auto-bidding environments with both return on ad spend constraints and budget constraints. Our empirical results validate our theoretical findings and show that both the welfare and revenue can be improved by selecting the weight of the boosts properly.
Bid leakage is a corrupt scheme in a first-price sealed-bid auction in which the procurer leaks the opponents bids to a favoured participant. The rational behaviour of such participant is to bid close to the deadline in order to receive all bids, whi ch allows him to ensure his win at the best price possible. While such behaviour does leave detectable traces in the data, the absence of bid leakage labels makes supervised classification impossible. Instead, we reduce the problem of the bid leakage detection to a positive-unlabeled classification. The key idea is to regard the losing participants as fair and the winners as possibly corrupted. This allows us to estimate the prior probability of bid leakage in the sample, as well as the posterior probability of bid leakage for each specific auction. We extract and analyze the data on 600,000 Russian procurement auctions between 2014 and 2018. We find that around 9% of the auctions are exposed to bid leakage, which results in an overall 1.5% price increase. The predicted probability of bid leakage is higher for auctions with a higher reserve price, with too low or too high number of participants, and if the winner has met the auctioneer in earlier auctions.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا