ﻻ يوجد ملخص باللغة العربية
Since 2019, most ad exchanges and sell-side platforms (SSPs), in the online advertising industry, shifted from second to first price auctions. Due to the fundamental difference between these auctions, demand-side platforms (DSPs) have had to update their bidding strategies to avoid bidding unnecessarily high and hence overpaying. Bid shading was proposed to adjust the bid price intended for second-price auctions, in order to balance cost and winning probability in a first-price auction setup. In this study, we introduce a novel deep distribution network for optimal bidding in both open (non-censored) and closed (censored) online first-price auctions. Offline and online A/B testing results show that our algorithm outperforms previous state-of-art algorithms in terms of both surplus and effective cost per action (eCPX) metrics. Furthermore, the algorithm is optimized in run-time and has been deployed into VerizonMedia DSP as production algorithm, serving hundreds of billions of bid requests per day. Online A/B test shows that advertisers ROI are improved by +2.4%, +2.4%, and +8.6% for impression based (CPM), click based (CPC), and conversion based (CPA) campaigns respectively.
In this paper, we investigate the problem about how to bid in repeated contextual first price auctions. We consider a single bidder (learner) who repeatedly bids in the first price auctions: at each time $t$, the learner observes a context $x_tin mat
Our paper concerns the computation of Nash equilibria of first-price auctions with correlated values. While there exist several equilibrium computation methods for auctions with independent values, the correlation of the bidders values introduces sig
A common practice in many auctions is to offer bidders an opportunity to improve their bids, known as a Best and Final Offer (BAFO) stage. This final bid can depend on new information provided about either the asset or the competitors. This paper exa
Auto-bidding has become one of the main options for bidding in online advertisements, in which advertisers only need to specify high-level objectives and leave the complex task of bidding to auto-bidders. In this paper, we propose a family of auction
Bid leakage is a corrupt scheme in a first-price sealed-bid auction in which the procurer leaks the opponents bids to a favoured participant. The rational behaviour of such participant is to bid close to the deadline in order to receive all bids, whi