ترغب بنشر مسار تعليمي؟ اضغط هنا

Method of Moments Confidence Intervals for a Semi-Supervised Two-Component Mixture Model

73   0   0.0 ( 0 )
 نشر من قبل Weixin Yao
 تاريخ النشر 2021
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

A mixture of a distribution of responses from untreated patients and a shift of that distribution is a useful model for the responses from a group of treated patients. The mixture model accounts for the fact that not all the patients in the treated group will respond to the treatment and consequently their responses follow the same distribution as the responses from untreated patients. The treatment effect in this context consists of both the fraction of the treated patients that are responders and the magnitude of the shift in the distribution for the responders. In this paper, we investigate properties of the method of moment estimators for the treatment effect and demonstrate their usefulness for obtaining approximate confidence intervals without any parametric assumptions about the distribution of responses.



قيم البحث

اقرأ أيضاً

136 - Christoph Dalitz 2018
Introductory texts on statistics typically only cover the classical two sigma confidence interval for the mean value and do not describe methods to obtain confidence intervals for other estimators. The present technical report fills this gap by first defining different methods for the construction of confidence intervals, and then by their application to a binomial proportion, the mean value, and to arbitrary estimators. Beside the frequentist approach, the likelihood ratio and the highest posterior density approach are explained. Two methods to estimate the variance of general maximum likelihood estimators are described (Hessian, Jackknife), and for arbitrary estimators the bootstrap is suggested. For three examples, the different methods are evaluated by means of Monte Carlo simulations with respect to their coverage probability and interval length. R code is given for all methods, and the practitioner obtains a guideline which method should be used in which cases.
142 - Yunan Wu , Lan Wang 2019
We propose a new procedure for inference on optimal treatment regimes in the model-free setting, which does not require to specify an outcome regression model. Existing model-free estimators for optimal treatment regimes are usually not suitable for the purpose of inference, because they either have nonstandard asymptotic distributions or do not necessarily guarantee consistent estimation of the parameter indexing the Bayes rule due to the use of surrogate loss. We first study a smoothed robust estimator that directly targets the parameter corresponding to the Bayes decision rule for optimal treatment regimes estimation. This estimator is shown to have an asymptotic normal distribution. Furthermore, we verify that a resampling procedure provides asymptotically accurate inference for both the parameter indexing the optimal treatment regime and the optimal value function. A new algorithm is developed to calculate the proposed estimator with substantially improved speed and stability. Numerical results demonstrate the satisfactory performance of the new methods.
Consider a two-treatment, two-period crossover trial, with responses that are continuous random variables. We find a large-sample frequentist 1-alpha confidence interval for the treatment difference that utilizes the uncertain prior information that there is no differential carryover effect.
We consider a linear regression model with regression parameter beta=(beta_1,...,beta_p) and independent and identically N(0,sigma^2) distributed errors. Suppose that the parameter of interest is theta = a^T beta where a is a specified vector. Define the parameter tau=c^T beta-t where the vector c and the number t are specified and a and c are linearly independent. Also suppose that we have uncertain prior information that tau = 0. We present a new frequentist 1-alpha confidence interval for theta that utilizes this prior information. We require this confidence interval to (a) have endpoints that are continuous functions of the data and (b) coincide with the standard 1-alpha confidence interval when the data strongly contradicts this prior information. This interval is optimal in the sense that it has minimum weighted average expected length where the largest weight is given to this expected length when tau=0. This minimization leads to an interval that has the following desirable properties. This interval has expected length that (a) is relatively small when the prior information about tau is correct and (b) has a maximum value that is not too large. The following problem will be used to illustrate the application of this new confidence interval. Consider a 2-by 2 factorial experiment with 20 replicates. Suppose that the parameter of interest theta is a specified simple effect and that we have uncertain prior information that the two-factor interaction is zero. Our aim is to find a frequentist 0.95 confidence interval for theta that utilizes this prior information.
Bootstrap smoothed (bagged) parameter estimators have been proposed as an improvement on estimators found after preliminary data-based model selection. The key result of Efron (2014) is a very convenient and widely applicable formula for a delta meth od approximation to the standard deviation of the bootstrap smoothed estimator. This approximation provides an easily computed guide to the accuracy of this estimator. In addition, Efron (2014) proposed a confidence interval centered on the bootstrap smoothed estimator, with width proportional to the estimate of this approximation to the standard deviation. We evaluate this confidence interval in the scenario of two nested linear regression models, the full model and a simpler model, and a preliminary test of the null hypothesis that the simpler model is correct. We derive computationally convenient expressions for the ideal bootstrap smoothed estimator and the coverage probability and expected length of this confidence interval. In terms of coverage probability, this confidence interval outperforms the post-model-selection confidence interval with the same nominal coverage and based on the same preliminary test. We also compare the performance of confidence interval centered on the bootstrap smoothed estimator, in terms of expected length, to the usual confidence interval, with the same minimum coverage probablility, based on the full model.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا