ﻻ يوجد ملخص باللغة العربية
Radial-velocity (RV) jitter caused by stellar magnetic activity is an important factor in state-of-the-art exoplanet discovery surveys such as CARMENES. Stellar rotation, along with heterogeneities in the photosphere and chromosphere caused by activity, can result in false-positive planet detections. Hence, it is necessary to determine the stellar rotation period and compare it to any putative planetary RV signature. Long-term measurements of activity indicators such as the chromospheric emission in the Ca II H&K lines enable the identification of magnetic activity cycles. In order to determine stellar rotation periods and study the long-term behavior of magnetic activity of the CARMENES guaranteed time observations (GTO) sample, it is advantageous to extract Ca II H&K time series from archival data, since the CARMENES spectrograph does not cover the blue range of the stellar spectrum containing the Ca II H&K lines. We have assembled a catalog of 11634 archival spectra of 186 M dwarfs acquired by seven different instruments covering the Ca II H&K regime: ESPADONS, FEROS, HARPS, HIRES, NARVAL, TIGRE, and UVES. The relative chromospheric flux in these lines was directly extracted from the spectra by rectification with PHOENIX synthetic spectra via narrow passbands around the Ca ii H&K line cores. The combination of archival spectra from various instruments results in time series for 186 stars from the CARMENES GTO sample. As an example of the use of the catalog, we report the tentative discovery of three previously unknown activity cycles of M dwarfs. We conclude that the method of extracting Ca II H&K fluxes with the use of model spectra yields consistent results for different instruments and that the compilation of this catalog will enable the analysis of long-term activity time series for a large number of M dwarfs.
Aims: We search for low-mass companions of M dwarfs and characterize their multiplicity fraction with the purpose of helping in the selection of the most appropriate targets for the CARMENES exoplanet survey. Methods: We obtained high-resolution imag
Aims. The main goal of this work is to measure rotation periods of the M-type dwarf stars being observed by the CARMENES exoplanet survey to help distinguish radial-velocity signals produced by magnetic activity from those produced by exoplanets. Rot
M dwarfs are prime targets for planet search programs, particularly of those focused on the detection and characterization of rocky planets in the habitable zone. Understanding their magnetic activity is important because it affects our ability to de
M dwarf stars are excellent candidates around which to search for exoplanets, including temperate, Earth-sized planets. To evaluate the photochemistry of the planetary atmosphere, it is essential to characterize the UV spectral energy distribution of
Context. CARMENES is a stabilised, high-resolution, double-channel spectrograph at the 3.5 m Calar Alto telescope. It is optimally designed for radial-velocity surveys of M dwarfs with potentially habitable Earth-mass planets. Aims. We prepare a list