ترغب بنشر مسار تعليمي؟ اضغط هنا

The degree of asymmetry of sequences

86   0   0.0 ( 0 )
 نشر من قبل Sergi Elizalde
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We explore the notion of degree of asymmetry for integer sequences and related combinatorial objects. The degree of asymmetry is a new combinatorial statistic that measures how far an object is from being symmetric. We define this notion for compositions, words, matchings, binary trees and permutations, we find generating functions enumerating these objects with respect to their degree of asymmetry, and we describe the limiting distribution of this statistic in each case.



قيم البحث

اقرأ أيضاً

101 - F. Bock , D. Rautenbach 2018
We study the possible values of the matching number among all trees with a given degree sequence as well as all bipartite graphs with a given bipartite degree sequence. For tree degree sequences, we obtain closed formulas for the possible values. For bipartite degree sequences, we show the existence of realizations with a restricted structure, which allows to derive an analogue of the Gale-Ryser Theorem characterizing bipartite degree sequences. More precisely, we show that a bipartite degree sequence has a realization with a certain matching number if and only if a cubic number of inequalities similar to those in the Gale-Ryser Theorem are satisfied. For tree degree sequences as well as for bipartite degree sequences, the possible values of the matching number form intervals.
We find an asymptotic enumeration formula for the number of simple $r$-uniform hypergraphs with a given degree sequence, when the number of edges is sufficiently large. The formula is given in terms of the solution of a system of equations. We give s ufficient conditions on the degree sequence which guarantee existence of a solution to this system. Furthermore, we solve the system and give an explicit asymptotic formula when the degree sequence is close to regular. This allows us to establish several properties of the degree sequence of a random $r$-uniform hypergraph with a given number of edges. More specifically, we compare the degree sequence of a random $r$-uniform hypergraph with a given number edges to certain models involving sequences of binomial or hypergeometric random variables conditioned on their sum.
In network modeling of complex systems one is often required to sample random realizations of networks that obey a given set of constraints, usually in form of graph measures. A much studied class of problems targets uniform sampling of simple graphs with given degree sequence or also with given degree correlations expressed in the form of a joint degree matrix. One approach is to use Markov chains based on edge switches (swaps) that preserve the constraints, are irreducible (ergodic) and fast mixing. In 1999, Kannan, Tetali and Vempala (KTV) proposed a simple swap Markov chain for sampling graphs with given degree sequence and conjectured that it mixes rapidly (in poly-time) for arbitrary degree sequences. While the conjecture is still open, it was proven for special degree sequences, in particular, for those of undirected and directed regular simple graphs, of half-regular bipartite graphs, and of graphs with certain bounded maximum degrees. Here we prove the fast mixing KTV conjecture for novel, exponentially large classes of irregular degree sequences. Our method is based on a canonical decomposition of degree sequences into split graph degree sequences, a structural theorem for the space of graph realizations and on a factorization theorem for Markov chains. After introducing bipartite splitted degree sequences, we also generalize the canonical split graph decomposition for bipartite and directed graphs.
One of the simplest ways to decide whether a given finite sequence of positive integers can arise as the degree sequence of a simple graph is the greedy algorithm of Havel and Hakimi. This note extends their approach to directed graphs. It also studi es cases of some simple forbidden edge-sets. Finally, it proves a result which is useful to design an MCMC algorithm to find random realizations of prescribed directed degree sequences.
Posas theorem states that any graph $G$ whose degree sequence $d_1 le ldots le d_n$ satisfies $d_i ge i+1$ for all $i < n/2$ has a Hamilton cycle. This degree condition is best possible. We show that a similar result holds for suitable subgraphs $G$ of random graphs, i.e. we prove a `resilience version of Posas theorem: if $pn ge C log n$ and the $i$-th vertex degree (ordered increasingly) of $G subseteq G_{n,p}$ is at least $(i+o(n))p$ for all $i<n/2$, then $G$ has a Hamilton cycle. This is essentially best possible and strengthens a resilience version of Diracs theorem obtained by Lee and Sudakov. Chvatals theorem generalises Posas theorem and characterises all degree sequences which ensure the existence of a Hamilton cycle. We show that a natural guess for a resilience version of Chvatals theorem fails to be true. We formulate a conjecture which would repair this guess, and show that the corresponding degree conditions ensure the existence of a perfect matching in any subgraph of $G_{n,p}$ which satisfies these conditions. This provides an asymptotic characterisation of all degree sequences which resiliently guarantee the existence of a perfect matching.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا