ﻻ يوجد ملخص باللغة العربية
We explore the notion of degree of asymmetry for integer sequences and related combinatorial objects. The degree of asymmetry is a new combinatorial statistic that measures how far an object is from being symmetric. We define this notion for compositions, words, matchings, binary trees and permutations, we find generating functions enumerating these objects with respect to their degree of asymmetry, and we describe the limiting distribution of this statistic in each case.
We study the possible values of the matching number among all trees with a given degree sequence as well as all bipartite graphs with a given bipartite degree sequence. For tree degree sequences, we obtain closed formulas for the possible values. For
We find an asymptotic enumeration formula for the number of simple $r$-uniform hypergraphs with a given degree sequence, when the number of edges is sufficiently large. The formula is given in terms of the solution of a system of equations. We give s
In network modeling of complex systems one is often required to sample random realizations of networks that obey a given set of constraints, usually in form of graph measures. A much studied class of problems targets uniform sampling of simple graphs
One of the simplest ways to decide whether a given finite sequence of positive integers can arise as the degree sequence of a simple graph is the greedy algorithm of Havel and Hakimi. This note extends their approach to directed graphs. It also studi
Posas theorem states that any graph $G$ whose degree sequence $d_1 le ldots le d_n$ satisfies $d_i ge i+1$ for all $i < n/2$ has a Hamilton cycle. This degree condition is best possible. We show that a similar result holds for suitable subgraphs $G$