ﻻ يوجد ملخص باللغة العربية
Restricted Boltzmann Machines (RBM) are bi-layer neural networks used for the unsupervised learning of model distributions from data. The bipartite architecture of RBM naturally defines an elegant sampling procedure, called Alternating Gibbs Sampling (AGS), where the configurations of the latent-variable layer are sampled conditional to the data-variable layer, and vice versa. We study here the performance of AGS on several analytically tractable models borrowed from statistical mechanics. We show that standard AGS is not more efficient than classical Metropolis-Hastings (MH) sampling of the effective energy landscape defined on the data layer. However, RBM can identify meaningful representations of training data in their latent space. Furthermore, using these representations and combining Gibbs sampling with the MH algorithm in the latent space can enhance the sampling performance of the RBM when the hidden units encode weakly dependent features of the data. We illustrate our findings on three datasets: Bars and Stripes and MNIST, well known in machine learning, and the so-called Lattice Proteins, introduced in theoretical biology to study the sequence-to-structure mapping in proteins.
The search for novel entangled phases of matter has lead to the recent discovery of a new class of ``entanglement transitions, exemplified by random tensor networks and monitored quantum circuits. Most known examples can be understood as some classic
Restricted Boltzmann machines are undirected neural networks which have been shown to be effective in many applications, including serving as initializations for training deep multi-layer neural networks. One of the main reasons for their success is
The restricted Boltzmann machine is a network of stochastic units with undirected interactions between pairs of visible and hidden units. This model was popularized as a building block of deep learning architectures and has continued to play an impor
Extracting automatically the complex set of features composing real high-dimensional data is crucial for achieving high performance in machine--learning tasks. Restricted Boltzmann Machines (RBM) are empirically known to be efficient for this purpose
Calculating the spectral function of two dimensional systems is arguably one of the most pressing challenges in modern computational condensed matter physics. While efficient techniques are available in lower dimensions, two dimensional systems prese