ﻻ يوجد ملخص باللغة العربية
We present a comparative study of X-ray and IR selected AGNs at $zapprox2$ to highlight the importance of the AGN selection effects on the distributions of star formation (SF) and morphological properties of the host galaxies. We find that while the median SF of X-ray AGN hosts are similar to non-AGN star forming galaxies (SFGs), the incidence of X-ray AGNs, q$_{rm{AGN}}$, is higher among galaxies with suppressed SF and larger stellar mass surface density within both the half-light radius ($Sigma_e$) and the central 1 kpc ($Sigma_{rm{1kpc}}$), IR AGN hosts are different. They are less massive, have elevated SF and share similar distributions of colors, $Sigma_e$ and $Sigma_{rm{1kpc}}$ with normal SFGs. Given that $Sigma_e$ and $Sigma_{rm{1kpc}}$ strongly correlate with stellar mass (M$_*$), we introduce $frac{M_{rm{1kpc}}}{M_*}$, the fractional mass within central 1 kpc, to quantify galaxy compactness, which is independent on M$_*$. Both AGN populations have similar $frac{M_{rm{1kpc}}}{M_*}$ distributions to normal SFGs. We show that while q$_{rm{AGN}}$ increases with both $Sigma_e$ and $Sigma_{rm{1kpc}}$, it remains constant with $frac{M_{rm{1kpc}}}{M_*}$, indicating that the trend of increasing q$_{rm{AGN}}$ with $Sigma$ is driven by M$_*$. While our findings are not in conflict with the scenario of AGN quenching, they do not directly imply it either, because the incidence of AGNs being hosted by transitional galaxies depends crucially on AGN selections. The additional evidence that no clear correlation is observed between SF and AGN bolometric luminosity, regardless of the selection, calls into question the notion that AGNs are the direct cause of quenching in $zapprox2$ massive galaxies.
We present results from the MOSFIRE Deep Evolution Field (MOSDEF) survey on the identification, selection biases, and host galaxy properties of 55 X-ray, IR and optically-selected active galactic nuclei (AGN) at $1.4 < z < 3.8$. We obtain rest-frame
The coeval AGN and galaxy evolution and the observed local relations between SMBHs and galaxy properties suggest some connection or feedback between SMBH growth and galaxy build-up. We looked for correlations between properties of X-ray detected AGN
Obtaining a census of active galactic nuclei (AGN) activity across cosmic time is critical to our understanding of galaxy evolution and formation. Many AGN classification techniques are compromised by dust obscuration. However, very long baseline int
Changing-look Active Galactic Nuclei (CL-AGNs) are a subset of AGNs in which the broad Balmer emission lines appear or disappear within a few years. We use the Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey to identify five CL-AGN
We investigate the effect of environment on the presence and fuelling of Active Galactic Nuclei (AGN) by identifying galaxies hosting AGN in massive galaxy clusters and the fields around them. We have identified AGN candidates via optical variability