ﻻ يوجد ملخص باللغة العربية
The symmetry energy and its density dependence are pivotal for many nuclear physics and astrophysics applications, as they determine properties ranging from the neutron-skin thickness of nuclei to the crust thickness and the radius of neutron stars. Recently, PREX-II reported a value of $0.283pm0.071$ fm for the neutron-skin thickness of $^{208}$Pb, $R_{rm skin}^{^{208}text{Pb}}$, implying a symmetry-energy slope parameter $L$ of $106pm37$ MeV, larger than most ranges obtained from microscopic calculations and other nuclear experiments. We use a nonparametric equation of state representation based on Gaussian processes to constrain the symmetry energy $S_0$, $L$, and $R_{rm skin}^{^{208}text{Pb}}$ directly from observations of neutron stars with minimal modeling assumptions. The resulting astrophysical constraints from heavy pulsar masses, LIGO/Virgo, and NICER favor smaller values of the neutron skin and $L$, as well as negative symmetry incompressibilities. Combining astrophysical data with chiral effective field theory ($chi$EFT) and PREX-II constraints yields $S_0 = 33.0^{+2.0}_{-1.8}$ MeV, $L=53^{+13}_{-15}$ MeV, and $R_{rm skin}^{^{208}text{Pb}} = 0.17^{+0.04}_{-0.04}$ fm. We also examine the consistency of several individual $chi$EFT calculations with astrophysical observations and terrestrial experiments. We find that there is only mild tension between $chi$EFT, astrophysical data, and PREX-IIs $R_mathrm{skin}^{^{208}mathrm{Pb}}$ measurement ($p$-value $= 12.3%$) and that there is excellent agreement between $chi$EFT, astrophysical data, and other nuclear experiments.
We argue that the reaction mechanism for the coherent pion production is not known with sufficient accuracy to determine the neutron radius of 208Pb to the claimed precision of 0.03 fm.
We present and discuss numerical predictions for the neutron density distribution of $^{208}$Pb using various non-relativistic and relativistic mean-field models for the nuclear structure. Our results are compared with the very recent pion photoprodu
The $^{208}$Pb($p$,$ngammabar p$) $^{207}$Pb reaction at a beam energy of 30 MeV has been used to excite the anti-analog of the giant dipole resonance (AGDR) and to measure its $gamma$-decay to the isobaric analog state in coincidence with proton dec
The symmetry energy obtained with the effective Skyrme energy density functional is related to the values of isoscalar effective mass and isovector effective mass, which is also indirectly related to the incompressibility of symmetric nuclear matter.
Information on the size and shape of the neutron skin on $^{208}$Pb has been extracted from coherent pion photoproduction cross sections measured using the Crystal Ball together with the Glasgow tagger at the MAMI electron beam facility. On exploitat